Advertisement

First-order approximation to the Boltzmann–Curtiss equation for flows with local spin

  • Louis B. Wonnell
  • James ChenEmail author
Article
  • 33 Downloads

Abstract

The first-order approximation to the solution of the Boltzmann–Curtiss transport equation is derived. The resulting distribution function treats the rotation or gyration of spherical particles as an independent classical variable, deviating from the quantum mechanical treatment of molecular rotation found in the Wang Chang–Uhlenbeck equation. The Boltzmann–Curtiss equation, therefore, does not treat different rotational motions as separate molecular species. The first-order distribution function yields momentum equations for the translational velocity and gyration, which match the form of the governing equations of morphing continuum theory (MCT), a theory derived from the approach of rational continuum thermomechanics. The contributions of the local rotation to the Cauchy stress and the viscous diffusion are found to be proportional to an identical expression based on the relaxation time, number density, and equilibrium temperature of the fluid. When gyration is equated to the macroscopic angular velocity, the kinetic description reduces to the first-order approximation for a classical monatomic gas, and the governing equations match the form of the Navier–Stokes equations. The relaxation time used for this approximation is shown to be more complex due to the additional variable of local rotation. The approach of De Groot and Mazur is invoked to give an initial approximation for the relaxation of the gyration. The incorporation of this relaxation time, and other physical parameters, into the coefficients of the governing equations provides a more in-depth physical treatment of the new terms in the MCT equations, allowing for experimenters to test these expressions and get a better understanding of new coefficients in MCT.

Keywords

BGK formulation Kinetic theory Turbulence 

Notes

Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154. LBW would like to thank his coworkers Mohamad Ibrahim Cheikh and Mohamed Mohsen for their assistance with this work.

References

  1. 1.
    McCormack P (2012) Vortex, molecular spin and nanovorticity. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Haller G (2005) An objective definition of a vortex. J Fluid Mech 525:1MathSciNetCrossRefGoogle Scholar
  3. 3.
    Eringen AC (1966) Theory of micropolar fluids. J Math Mech 16:1MathSciNetGoogle Scholar
  4. 4.
    Hirschfelder JO, Bird RB, Curtiss CF (1964) Molecular theory of gases and liquids. Wiley, New YorkzbMATHGoogle Scholar
  5. 5.
    Hynes JT, Kapral R, Weinberg M (1978) Molecular rotation and reorientation: microscopic and hydrodynamic contributions. J Chem Phys 69:2725CrossRefGoogle Scholar
  6. 6.
    Jenkins JT, Richman MW (1985) Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys Fluids 28:3485CrossRefGoogle Scholar
  7. 7.
    Rahimi B, Struchtrup H (2016) Macroscopic and kinetic modelling of rarefied polyatomic gases. J Fluid Mech 806:437MathSciNetCrossRefGoogle Scholar
  8. 8.
    Truesdell C, Noll W (2004) The non-linear field theories of mechanics. In: Flugge S (ed) Encyclopedia of physics. Springer, BerlinzbMATHGoogle Scholar
  9. 9.
    Wang-Chang CS, Uhlenbeck GE, De Boer J (1964) The heat conductivity and viscosity of polyatomic gases. Stud Stat Mech 2:241MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ahmadi G (1975) Turbulent shear flow of micropolar fluids. Int J Eng Sci 13(11):959MathSciNetCrossRefGoogle Scholar
  11. 11.
    Eringen AC (1999) Microcontinuum field theories: I. Foundations and solids, Springer, New YorkCrossRefGoogle Scholar
  12. 12.
    Eringen AC (2001) Microcontinuum field theories: II. Fluent media, Springer, New YorkzbMATHGoogle Scholar
  13. 13.
    Kirwan A Jr (1967) Theory of turbulent eddies. Phys Fluids 10(9):S84CrossRefGoogle Scholar
  14. 14.
    Stokes VK (2012) Theories of fluids with microstructure: an introduction. Springer, BerlinGoogle Scholar
  15. 15.
    Meng J, Zhang Y, Hadjiconstantinou NG, Radtke GA, Shan X (2013) Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows. J Fluid Mech 718:347MathSciNetCrossRefGoogle Scholar
  16. 16.
    Munafo A, Panesi M, Magin TE (2014) Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows. Phys Rev E 89:023001CrossRefGoogle Scholar
  17. 17.
    Arima T, Ruggeri T, Sugiyama M (2017) Rational extended thermodynamics of a rarefied polyatomic gas with molecular relaxation processes. Phys Rev E 96:042143CrossRefGoogle Scholar
  18. 18.
    Eu BC (1986) Kinetic theory and irreversible thermodynamics. Acc Chem Res 19:153CrossRefGoogle Scholar
  19. 19.
    Eu BC (1998) Nonequilibrium statistical mechanics: ensemble method. Springer, New YorkCrossRefGoogle Scholar
  20. 20.
    Eu BC (2002) Generalized thermodynamics: thermodynamics of irreversible processes and generalized hydrodynamics. Springer, New YorkCrossRefGoogle Scholar
  21. 21.
    Myong RS (1999) Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows. Phys Fluids 11:2788CrossRefGoogle Scholar
  22. 22.
    Myong RS (2001) A computational method for Eu’s generalized hydrodynamic equations of rarefied and microscale gasdynamics. J Comput Phys 168:47CrossRefGoogle Scholar
  23. 23.
    Myong RS (2004) A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows. J Comput Phys 195:655CrossRefGoogle Scholar
  24. 24.
    Grad H (1952) Statistical mechanics, thermodynamics, and fluid dynamics of systems with an arbitrary number of integrals. Commun Pure Appl Math 5:455MathSciNetCrossRefGoogle Scholar
  25. 25.
    De Groot SR, Mazur P (1962) Non-equilibrium thermodynamics. North-Holland, AmsterdamzbMATHGoogle Scholar
  26. 26.
    Snider RF, Lewchuk KS (1967) Irreversible thermodynamics of a fluid system with spin. J Chem Phys 46:3163CrossRefGoogle Scholar
  27. 27.
    Stokes VK (1966) Couple stresses in fluids. Phys Fluids 9:1709CrossRefGoogle Scholar
  28. 28.
    Evans DJ, Streett WB (1978) Transport properties of homonuclear diatomics: II. Dense fluids. Mol Phys 36:161Google Scholar
  29. 29.
    Boltzmann L (1878) Zur theorie der elastischen nachwirkung. Ann Phys 241:430CrossRefGoogle Scholar
  30. 30.
    Maxwell JC (1873) Clerk Maxwell’s kinetic theory of gases. Nature 8:122CrossRefGoogle Scholar
  31. 31.
    Curtiss CF (1981) The classical Boltzmann equation of a gas of diatomic molecules. J Chem Phys 75:376CrossRefGoogle Scholar
  32. 32.
    Curtiss CF (1992) The classical Boltzmann equation of a molecular gas. J Chem Phys 97:1416CrossRefGoogle Scholar
  33. 33.
    Curtiss CF, Dahler JS (1963) Kinetic theory of nonspherical molecules. V. J Chem Phys 38:2352Google Scholar
  34. 34.
    Sandler SI, Dahler JS (1965) Kinetic theory of loaded spheres. II. J Chem Phys 43:1750MathSciNetCrossRefGoogle Scholar
  35. 35.
    She RSC, Sather NF (1967) Kinetic theory of polyatomic gases. J Chem Phys 47:4978CrossRefGoogle Scholar
  36. 36.
    Myong RS (2014) On the high Mach number shock structure singularity caused by overreach of Maxwellian molecules. Phys Fluids 26:056102CrossRefGoogle Scholar
  37. 37.
    Huang K (1987) Statistical mechanics. Wiley, New YorkzbMATHGoogle Scholar
  38. 38.
    Parker JG (1959) Rotational and vibrational relaxation in diatomic gases. Phys Fluids 2:449MathSciNetCrossRefGoogle Scholar
  39. 39.
    Dahler JS, Sather NF (1963) Kinetic theory of loaded spheres. I. J Chem Phys 38:2363MathSciNetCrossRefGoogle Scholar
  40. 40.
    Monchick L (1964) Small periodic disturbances in polyatomic gases. Phys Fluids 7:882CrossRefGoogle Scholar
  41. 41.
    Carnevale EH, Carey C, Larson G (1967) Ultrasonic determination of rotational collision numbers and vibrational relaxation times of polyatomic gases at high temperatures. J Chem Phys 47:2829CrossRefGoogle Scholar
  42. 42.
    Monchick L, Pereira ANG, Mason EA (1965) Heat conductivity of polyatomic and polar gases and gas mixtures. J Chem Phys 42:3241CrossRefGoogle Scholar
  43. 43.
    Valentini P, Zhang C, Schwartzentruber TE (2012) Molecular dynamics simulation of rotational relaxation in nitrogen: implications for rotational collision number models. Phys Fluids 24:106101CrossRefGoogle Scholar
  44. 44.
    Chen J (2017) Morphing continuum theory for turbulence: theory, computation, and visualization. Phys Rev E 96:043108CrossRefGoogle Scholar
  45. 45.
    Chen J, Lee JD, Liang C (2011) Constitutive equations of micropolar electromagnetic fluids. J Non-Newtonian Fluid Mech 166:867CrossRefGoogle Scholar
  46. 46.
    Chen J (2017) An advanced kinetic theory for morphing continuum with inner structures. Rep Math Phys 80(3):317MathSciNetCrossRefGoogle Scholar
  47. 47.
    Peddieson J (1972) An application of the micropolar fluid model to the calculation of a turbulent shear flow. Int J Eng Sci 10:23CrossRefGoogle Scholar
  48. 48.
    Mehrabian R, Atefi G (2008) A cosserat continuum mechanical approach to turbulent channel pressure driven flow of isotropic fluid. J Dispers Sci Technol 29(7):1035CrossRefGoogle Scholar
  49. 49.
    Alizadeh M, Silber G, Nejad AG (2011) A continuum mechanical gradient theory with an application to fully developed turbulent flows. J Dispers Sci Technol 32(2):185CrossRefGoogle Scholar
  50. 50.
    Wonnell LB, Chen J (2017) Morphing continuum theory: incorporating the physics of microstructures to capture the transition to turbulence within a boundary layer. J Fluid Eng 139:011205CrossRefGoogle Scholar
  51. 51.
    Wonnell LB, Cheikh MI, Chen J (2018) Morphing continuum simulation of transonic flow over Axisymmetric Hill. AIAA J 56:4321–4330CrossRefGoogle Scholar
  52. 52.
    Cheikh MI, Wonnell LB, Chen J (2018) Morphing continuum analysis of energy transfer in compressible turbulence. Phys Rev Fluids 3(2):024604CrossRefGoogle Scholar
  53. 53.
    Kremer GM (2010) An introduction to the Boltzmann equation and transport processes in gases. Springer, BerlinCrossRefGoogle Scholar
  54. 54.
    Struchtrup H (2005) Macroscopic transport equations for rarefied gas flows. Springer, New York, pp 145–160zbMATHGoogle Scholar
  55. 55.
    Gupta VK, Shukla P, Torrilhon M (2018) Higher-order moment theories for dilute granular gases of smooth hard spheres. J Fluid Mech 836:451MathSciNetCrossRefGoogle Scholar
  56. 56.
    Chen J, Liang C, Lee JD (2012) Numerical simulation for unsteady compressible micropolar fluid flow. Comput Fluids 66:1MathSciNetCrossRefGoogle Scholar
  57. 57.
    Fowles G, Cassidy G (2004) Analytical mechanics. Thomson, BelmontGoogle Scholar
  58. 58.
    Baraff D (1997) An introduction to physically based modeling: rigid body simulation I—unconstrained rigid body dynamics. In: SIGGRAPH course notesGoogle Scholar
  59. 59.
    Chen H, Kandasamy S, Orszag S, Shock R, Succi S, Yakhot V (2003) Extended Boltzmann kinetic equation for turbulent flows. Science 301(5633):633CrossRefGoogle Scholar
  60. 60.
    Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94:511Google Scholar
  61. 61.
    Curie P (1908) Oeuvres de Pierre Curie: publiées par les soins de la société de physique. Gauthier-Villars, ParisGoogle Scholar
  62. 62.
    Montero S, Pérez-Ríos J (2014) Rotational relaxation in molecular hydrogen and deuterium: theory versus acoustic experiments. J Chem Phys 141:114301CrossRefGoogle Scholar
  63. 63.
    Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69MathSciNetCrossRefGoogle Scholar
  64. 64.
    Becker R (1922) \(\text{ Sto }\beta \text{ welle }\) und Detonation. Z Phys 8(1):321CrossRefGoogle Scholar
  65. 65.
    Silber G, Janoske U, Alizadeh M, Benderoth G (2006) An application of a gradient theory with dissipative boundary conditions to fully developed turbulent flows. J Fluid Eng 129:643CrossRefGoogle Scholar
  66. 66.
    Ahmed MM, Chen J (2018) An advanced kinetic description for shock structure under hypersonic conditions. In: 71st Annual meeting of the APS division of fluid dynamics, 2018, vol 63. Bulletin of the American Physical SocietyGoogle Scholar
  67. 67.
    Cheikh MI, Chen J (2017) A morphing continuum approach to supersonic flow over a compression ramp. In: 47th AIAA fluid dynamics conference, pp AIAA 2017–3460Google Scholar
  68. 68.
    Cheikh MI, Wonnell LB, Chen J (2017) Energy cascade analysis: from subscale eddies to mean flow. In: 70th Annual meeting of the APS division of fluid dynamics, 2017, vol. 62. Bulletin of the American Physical SocietyGoogle Scholar
  69. 69.
    Wonnell LB, Chen J (2016) A morphing continuum approach to compressible flows: shock wave-turbulent boundary layer interaction. In: 46th AIAA fluid dynamics conference, pp AIAA 2016–4279Google Scholar
  70. 70.
    Wonnell LB, Chen J (2017) Extension of morphing continuum theory to numerical simulations of transonic flow over a bump. In: 47th AIAA fluid dynamics conference, pp AIAA 2017–3461Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Mechanical and Nuclear Engineering DepartmentKansas State UniversityManhattanUSA
  2. 2.Department of Mechanical and Aerospace EngineeringThe State University of New York at BuffaloBuffaloUSA

Personalised recommendations