Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Level of contamination in the feces of several species at major inland pollution sources in the drainage basin of Yeoja Bay, Republic of Korea

  • 47 Accesses


We assessed the levels of fecal contamination and the originating species of 12 major inland pollutants in the drainage basin of Yeoja Bay. The presence of the human-specific (HF183), ruminant-specific (BacR and Rum-2-Bac), pig-specific (Pig-Bac-2 and Pig-2-Bac), avian-specific (GFD), and gull-specific (Gull2) markers in water samples (n = 34) from 12 inland pollution sources around Yeoja Bay was analyzed. HF183 was detected in 97% of the water samples, and all major inland pollution sources were contaminated with human feces. BacR and Rum-2-Bac were detected in 94% and 11%, respectively, of the water samples. Pig-2-Bac was not detected in the inland pollution sources, but site L5 might be contaminated with swine feces. Gull2 was not detected, whereas GFD was detected in 26% of the water samples. This study highlights the utility of a MST toolbox approach for characterizing the water quality of inland pollution sources and identifying the feces producing species.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. Ahmed, W., Goonetilleke, A., Powell, D., Chauhan, K., & Gardner, T. (2009). Comparison of molecular markers to detect fresh sewage in environmental waters. Water Research, 43(19), 4908–4917.

  2. Ahmed, W., Yusuf, R., Hasan, I., Goonetilleke, A., & Gardner, T. (2010). Quantitative PCR assay of sewage-associated Bacteroides markers to assess sewage pollution in an urban lake in Dhaka, Bangladesh. Canada Journal of Microbiology, 56, 838–845.

  3. Ahmed, W., Masters, N., & Toze, S. (2012). Consistency in the host specificity and host sensitivity of the Bacteroides HF183 marker for sewage pollution tracking. Letters in Applied Microbiology, 55(4), 283–289.

  4. Ahmed, W., Harwood, V. J., Nguyen, K., Young, S., Hamilton, K., & Toze, S. (2016). Utility of helicobacter spp. associated GFD markers for detecting avian fecal pollution in natural waters of two continents. Water Research, 88, 613–622.

  5. Anderson, K. L., Whitlock, J. E., & Harwood, V. J. (2005). Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Applied and Environmental Microbiology, 71, 3041–3048.

  6. APHA. American Public Health Association. (1970). Recommended Procedures for the Examination of Seawater and Shellfish (4th ed.pp. 1–47). Washington D.C.: American Public Health Association.

  7. Brown, L. D., Cai, T. T., & DasGupta, A. (2001). Interval estimation for a binomial proportion. Statistical Science, 16(2), 101–117.

  8. Byappanahalli, M. N., & Ishii, S. (2011). Environmental sources of fecal bacteria. In M. J. Sadowsky & R. L. Whitman (Eds.), The fecal Bacteria (pp. 93–110). Washington, D.C.: ASM press.

  9. Campos, C. J., Kershaw, S. R., & Lee, R. J. (2013). Environmental influences on faecal indicator organisms in coastal waters and their accumulation in bivalve shellfish. Estuaries and Coasts, 36(4), 834–853.

  10. Conn, K. E., Habteselassie, M. Y., Denene Blackwood, A., & Noble, R. T. (2012). Microbial water quality before and after the repair of a failing onsite wastewater treatment system adjacent to coastal waters. Journal of Applied Microbiology, 112(1), 214–224.

  11. Dick, L. K., Bernhard, A. E., Brodeur, T. J., Santo Domingo, J. W., Simpson, J. M., Walters, S. P., & Field, K. G. (2005). Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Applied and Environmental Microbiology, 71(6), 3184–3191.

  12. EU. European Union. (2015). Commission Regulation (EU) 2015/2285 of 8 December 2015 amending Annex II to Regulation (EC) No 854/2004 of the European Parliament and of the Council laying down specific rules for the organization of official controls on products of animal origin intended for human consumption as regards certain requirements for live bivalve molluscs, echinoderms, tunicates and marine gastropods and Annex I to Regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R2285&from=EN. Accessed 10 March 2018.

  13. FDA. Food and Drug Administration. (2015). National Shellfish Sanitation Program guide for the control of molluscan shellfish 2015 revisions. Available online: https://www.fda.gov/Food/GuidanceRegulation/FederalStateFoodPrograms/default.htm. Accessed 10 March 2018.

  14. Fiksdal, L., Maki, J. S., LaCroix, S. J., & Staley, J. T. (1985). Survival and detection of Bacteroides spp., prospective indicator bacteria. Applied and Environmental Microbiology, 49(1), 148–150.

  15. Fisher, L. D., & van Belle, G. (1993). Biostatistics. A Methodology for the Health Sciences. New York: John Wiley and Sons.

  16. Glasoe, S., & Christy, A. (2004). Coastal urbanization and microbial contamination of shellfish growing areas. Olympia: Puget Sound Action Team.

  17. Gómez-Doñate, M., Casanovas-Massana, A., Muniesa, M., & Blanch, A. R. (2016). Development of new host-specific Bacteroides qPCR s for the identification of fecal contamination sources in water. Microbiology Open, 5(1), 83–94.

  18. Gourmelon, M., Caprais, M. P., Mieszkin, S., Marti, R., Wery, N., Jardé, E., Derrien, M., Jadas-Hécart, A., Communal, P. Y., Jaffrezic, A., & Pourcher, A. M. (2010). Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France. Water Research, 44(16), 4812–4824.

  19. Green, H. C., Dick, L. K., Gilpin, B., Samadpour, M., & Field, K. G. (2012). Genetic markers for rapid PCR-based identification of gull, Canada goose, duck, and chicken fecal contamination in water. Applied and Environmental Microbiology, 78(2), 503–510.

  20. Harwood, V. J., Staley, C., Badgley, B. D., Borges, K., & Korajkic, A. (2014). Microbial source tracking markers for detection of fecal contamination in environmental waters: Relationships between pathogens and human health outcomes. FEMS Microbiology Reviews, 38(1), 1–40.

  21. He, X., Liu, P., Zheng, G., Chen, H., Shi, W., Cui, Y., Ren, H., & Zhang, X. X. (2016). Evaluation of five microbial and four mitochondrial DNA markers for tracking human and pig fecal pollution in freshwater. Scientific Reports, 6, 35311.

  22. Jung, Y. J., Park, Y. C., Lee, K. J., Kim, M. S., Go, K. R., Park, S. G., Kwon, S. J., Yang, J. H., & Mok, J. S. (2017). Spatial and seasonal variation of pollution sources in proximity of the Jaranman-Saryangdo area in Korea. Marine Pollution Bulletin, 115(1–2), 369–375.

  23. Kildare, B. J., Leutenegger, C. M., McSwain, B. S., Bambic, D. G., Rajal, V. B., & Wuertz, S. (2007). 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: A Bayesian approach. Water Research, 41(16), 3701–3715.

  24. Kim, J. H., Shim, K. B., Shin, S. B., Park, K., Oh, E. G., Son, K. T., Yu, H., Lee, H. J., & Mok, J. S. (2017). Comparison of bioaccumulation and elimination of Escherichia coli and male-specific bacteriophages by ascidians and bivalves. Environmental Science and Pollution Research, 24, 28268–28276.

  25. Layton, A., McKay, L., Williams, D., Garrett, V., Gentry, R., & Sayler, G. (2006). Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Applied and Environmental Microbiology, 72, 4214–4224.

  26. Layton, B. A., Cao, Y., Ebentier, D. L., Hanley, K., Balleste, E., Brandao, J., Byappanahalli, M., Converse, R., Farnleitner, A. H., Gentry-Shields, J., Gidley, M. L., Gourmelon, M., Lee, C. S., Lee, J., Lozach, S., Madi, T., Meijer, W. G., Noble, R., Peed, L., Reischer, G. H., Rodrigues, R., Rose, J. B., Schriewer, A., Sinigalliano, C., Srinivasan, S., Stewart, J., Van De Werfhorst, L. C., Wang, D., Whitman, R., Wuertz, S., Jay, J., Holden, P. A., Boehm, A. B., Shanks, O., & Griffith, J. F. (2013). Performance of human fecal anaerobe-associated PCR-based assays in a multi-laboratory method evaluation study. Water Research, 47(18), 6897–6908.

  27. Lipp, E. K., Kurz, R., Vincent, R., Rodriguez-Palacios, C., Farrah, S. R., & Rose, J. B. (2001). The effects of seasonal variability and weather on microbial fecal pollution and enteric pathogens in a subtropical estuary. Estuaries, 24(2), 266–276.

  28. Maalouf, H., Pommepuy, M., & Le Guyader, F. S. (2010). Environmental conditions leading to shellfish contamination and related outbreaks. Food and Environmental Virology, 2(3), 136–145.

  29. Martinez-Manzanares, E., Morinigo, M. A., Castro, D., Balebona, M. C., Sanchez, J. M., & Borrego, J. J. (1992). Influence of the faecal pollution of marine sediments on the microbial content of shellfish. Marine Pollution Bulletin, 24(7), 342–349.

  30. Mauffret, A., Mieszkin, S., Morizur, M., Alfiansah, Y., Lozach, S., & Gourmelon, M. (2013). Recent innovation in microbial source tracking using bacterial real-time PCR markers in shellfish. Marine Pollution Bulletin, 68(1–2), 21–29.

  31. McQuaig, S., Griffith, J., & Harwood, V. J. (2012). Association of fecal indicator bacteria with human viruses and microbial source tracking markers at coastal beaches impacted by nonpoint source pollution. Applied and Environmental Microbiology, 78(18), 6423–6432.

  32. Mieszkin, S., Furet, J. P., Corthier, G., & Gourmelon, M. (2009). Estimation of pig fecal contamination in a river catchment by real-time PCR using two pig-specific Bacteroidales 16S rRNA genetic markers. Applied and Environmental Microbiology, 75(10), 3045–3054.

  33. Mieszkin, S., Yala, J. F., Joubrel, R., & Gourmelon, M. (2010). Phylogenetic analysis of Bacteroidales 16S rRNA gene sequences from human and animal effluents and assessment of ruminant faecal pollution by real-time PCR. Journal of Applied Microbiology, 108(3), 974–984.

  34. MOF. Ministry of Oceans and Fisheries. (2013). Classification standard of sedentary fisheries growing area. The Notification of Ministry of Oceans and Fisheries, 2013–154.

  35. MOF. Ministry of Oceans and Fisheries. (2017). Korean shellfish sanitation program (KSSP), annual report of the project for sanitary survey on the shellfish growing area. Ministry of Oceans and Fisheries, Sejong, Korea.

  36. Mok, J. S., Lee, K. J., Kim, P. H., Lee, T. S., Lee, H. J., Jung, Y. J., & Kim, J. H. (2016). Bacteriological quality evaluation of seawater and oysters from the Jaranman-Saryangdo area, a designated shellfish growing area in Korea: Impact of inland pollution sources. Marine Pollution Bulletin, 108(1–2), 147–154.

  37. Mok, J. S., Shim, K. B., Kwon, J. Y., & Kim, P. H. (2018). Bacterial quality evaluation on the shellfish-producing area along the south coast of Korea and suitability for the consumption of shellfish products therein. Fisheries and Aquatic Sciences, 21(36), 1–11.

  38. Nshimyimana, J. P., Cruz, M. C., Thompson, R. J., & Wuertz, S. (2017). Bacteroidales markers for microbial source tracking in Southeast Asia. Water Research, 118, 239–248.

  39. Okabe, S., Okayama, N., Savichtcheva, O., & Ito, T. (2007). Quantification of host-specific Bacteroides–Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater. Applied Microbiology and Biotechnology, 74(4), 890–901.

  40. Oliveira, J., Cunha, A., Castilho, F., Romalde, J. L., & Pereira, M. J. (2011). Microbial contamination and purification of bivalve shellfish: Crucial aspects in monitoring and future perspectives–a mini-review. Food Control, 22(6), 805–816.

  41. Portnoy, J. W., & Allen, J. R. (2006). Effects of tidal restrictions and potential benefits of tidal restoration on fecal coliform and shellfish-water quality. Journal of Shellfish Research, 25(2), 609–617.

  42. Reischer, G. H., Casper, D. C., Steinborn, R., Mach, R. L., & Farnleitner, A. H. (2006). Quantitative PCR method for sensitive detection of ruminant fecal pollution in freshwater and evaluation of this method in Alpine karstic regions. Applied and Environmental Microbiology, 72(8), 5610–5614.

  43. Riedel, T. E., Zimmer-Faust, A. G., Thulsiraj, V., Madi, T., Hanley, K. T., Ebentier, D. L., Byappanahalli, M., Layton, B., Raith, M., Boehm, A. B., Griffith, J. F., Holden, P. A., Shanks, O. C., Weisberg, S. B., & Jay, J. A. (2014). Detection limits and cost comparisons of human-and gull-associated conventional and quantitative PCR assays in artificial and environmental waters. Journal of Environmental Management, 136, 112–120.

  44. Sasikumar, G., & Krishnamoorthy, M. (2010). Faecal indicators and sanitary water quality of shellfish harvesting environment influences of seasonal monsoon and river runoff. Indian Journal of Marine Sciences, 39(3), 434–444.

  45. Schriewer, A., Goodwin, K. D., Sinigalliano, C. D., Cox, A. M., Wanless, D., Bartkowiak, J., Ebentier, D. L., Hanley, K. T., Ervin, J., Deering, L. A., Shanks, O. C., Peed, L. A., Meijer, W. G., Griffith, J. F., SantoDomingo, J., Jay, J. A., Holden, P. A., & Wuertz, S. (2013). Performance evaluation of canine-associated Bacteroidales assays in a multi-laboratory comparison study. Water Research, 47(18), 6909–6920.

  46. Scott, T. M., Rose, J. B., Jenkins, T. M., Farrah, S. R., & Lukasik, J. (2002). Microbial source tracking: Current methodology and future directions. Applied Environmental Microbiology, 68(12), 5796–5803.

  47. Seurinck, S., Defoirdt, T., Verstraete, W., & Siciliano, S. D. (2005). Detection and quantification of human-specific HF183 Bacteroides 16S rRNA genetic marker with real-time PCR for assessment of human fecal pollution in freshwater. Environmental Microbiology, 7, 249–259.

  48. Shin, S. B., Oh, E. K., Jeong, S. H., Lee, H. J., Kim, Y. K., & Lee, T. S. (2016). Assessment of bacteriological safety of the seawater and ark shell (Scapharca subcrenata) in Yeoja bay. Journal of the Korean Society for Fisheries and Marine Sciences Education, 28(5), 1435–1443.

  49. Silkie, S. S., & Nelson, K. L. (2009). Concentrations of host-specific and generic fecal markers measured by quantitative PCR in raw sewage and fresh animal feces. Water Research, 43(19), 4860–4871.

  50. Šimundić, A. M. (2009). Measures of diagnostic accuracy: Basic definitions. Electronic Journal of IFCC, 19(4), 203–211.

  51. Symonds, E. M., Young, S., Verbyla, M. E., McQuaig-Ulrich, S. M., Ross, E., Jimenez, J. A., Harwood, V. J., & Breitbart, M. (2017). Microbial source tracking in shellfish harvesting waters in the Gulf of Nicoya, Costa Rica. Water Research, 111(15), 177–184.

  52. Van De Werfhorst, L. C., Sercu, B., & Holden, P. A. (2011). Comparison of the host specificities of two Bacteroidales quantitative PCR assays used for tracking human fecal contamination. Applied and Environmental Microbiology, 77(17), 6258–6260.

  53. Wu, Y., & Chen, J. (2013). Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China. Ecological Indicators, 32, 294–304.

Download references


This work was supported by the National Institute of Fisheries Science (NIFS, R2019050)

Author information

Correspondence to Sang Hyeon Jeong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 46 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeong, S.H., Shin, S.B., Lee, J.H. et al. Level of contamination in the feces of several species at major inland pollution sources in the drainage basin of Yeoja Bay, Republic of Korea. Environ Monit Assess 192, 170 (2020). https://doi.org/10.1007/s10661-020-8131-7

Download citation


  • Microbial source tracking
  • Water quality
  • Fecal source
  • Shellfish-growing area
  • qPCR