Advertisement

Land use dynamics and future scenarios of the Rio Doce State Park buffer zone, Minas Gerais, Brazil

  • Brayan Ricardo De OliveiraEmail author
  • Elaine Lopes Da Costa
  • Sónia Maria Carvalho-Ribeiro
  • Paulina Maria Maia-Barbosa
Article

Abstract

It is necessary to understand the importance of landscapes that comprise the environment across a broad range of time and space and that each part of these landscapes responds to changes in environmental factors and land use. This study employs a multiscale modeling approach in the Rio Doce State Park (PERD), located in Minas Gerais, Brazil, based on a previous study on land use change in this region over the last 30 years (1985–2015), with an aim of predicting possible scenarios for the next 15 years (2015–2030). The results indicate that the municipalities and buffer zones within the PERD will suffer from increased human disturbance in all four land use types present in the region (Urban, Agriculture, Pasture, and Forestry). Correspondingly, areas of natural environment (Forest and Water) will shrink due to an increase in forest fragmentation, causing the loss of permanent ecological reserves, thereby endangering the biodiversity of these areas. Cooperation between the local community and private companies is therefore necessary to improve regional environmental conservation, encourage advanced sustainable development, and improve the quality of life for residents within each municipality near the State Park.

Keywords

Landscape ecology Environmental management Future scenarios Rio Doce State Park 

Notes

Acknowledgments

This study was supported by a Capes DS scholarship acquired by the student along with a doctorate in ecology (ECMVS-UFMG) in progress and in preparation with the structure of the Laboratory of Plankton Ecology (ICB–Institute of Biological Sciences) and Cartography laboratories (IGC–Institute of Geosciences), being part of the program The Long-Term Research Program-LTRP. Special thanks to the LTPR for the logistical, financial and scientific support and to the Rio Doce State Park (PERD) for the partnership throughout the project.

Funding information

The authors declare that this study had no provision of funds.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10661_2019_8016_MOESM1_ESM.docx (970 kb)
ESM 1 (DOCX 969 kb)

References

  1. Aguiar, C. J., & Souza, P. M. (2014). Sugar cane expansion and the production of other agricultural goods in the last decade: An analysis of the main producing states. Review of Economics, NE. Fortaleza, 45(2), 88–100.Google Scholar
  2. Aguiar, D. A., Rudorff, B. F. T., & Marcos Adami, Y. E. S. (2009). Imagens de sensoriamento remoto no monitoramento da colheita da cana-de-açúcar (Remote sensing images in the monitoring of the sugarcane harvest). Engenharia Agrícola, 29(3), 440–451.CrossRefGoogle Scholar
  3. Alcamo, J. (2008). Environmental futures: The practice of environmental scenario analysis. Amsterdam: Elsevier.Google Scholar
  4. Antrop, M. (2005). Why landscapes of the past are important for the future. Landscape and Urban Planning, 70(1–2), 21–34.CrossRefGoogle Scholar
  5. APA do Jacroá. (2008). Plano de Gestão e Manejo: Área de Proteção Ambiental. Retrieved February 13, 2019, from http://www.universalisconsultoria.com.br/projetos/0029.pdf.
  6. APA Jaguaraçu. (2008). Plano de Gestão e Manejo: Área de Proteção Ambiental. Retrieved February 13, 2019, from http://www.universalisconsultoria.com.br/projetos/0032.pdf.
  7. Carpenter, S. R., Bennett, E. M., & Peterson, G. D. (2006). Editorial: Special feature on scenarios for ecosystem services. Ecology and Society, 11(2), 32.CrossRefGoogle Scholar
  8. Carr Edward, R. (2002). Human ecological security in coastal Ghana, West Africa: The social implications of economic and environmental change in development contexts. Lexington: University of Kentucky.Google Scholar
  9. Cen, X., Wu, C., Xing, X., Fang, M., Garang, Z., & Wu, Y. (2015). Coupling intensive land use and landscape ecological security for urban sustainability: An integrated socioeconomic data and spatial metrics analysis in Hangzhou city. Sustainability, 7, 1459–1482.  https://doi.org/10.3390/su7021459.CrossRefGoogle Scholar
  10. Costanza, R., & Daly, H. E. (1992). Natural capital and sustainable development. Conservation Biology, 6(1), 37–46.CrossRefGoogle Scholar
  11. Costanza, R., Norton, B. G., & Haskell, B. D. (1992). Ecosystem health: New goals for environmental management. Washington: Island Press.Google Scholar
  12. Da Silva, M. S. F., & Souza, R. M. (2014). Padrões espaciais de fragmentação florestal na flona do Ibura – Sergipe. Mercator, 13(3), 121–137.CrossRefGoogle Scholar
  13. De Groot, R. S., Wilson, M. A., & Boumans, R. M. J. (2002). A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics, 41(3), 393–408.CrossRefGoogle Scholar
  14. Dias-Filho, M. B. (2014). Diagnóstico das Pastagens no Brasil (diagnosis of pastures in Brazil). Belém: Embrapa Amazônia Oriental Retrieved March 30, 2018, from https://www.infoteca.cnptia.embrapa.br/bitstream/doc/986147/1/DOC402.pdf.Google Scholar
  15. EMATER/MG. (2014). Perfil da Agricultura Familiar de Minas Gerais. Governo do Estado de Minas Gerais Secretaria de Estado de Agricultura, Pecuária e Abastecimento de Minas Gerais Empresa de Assistência Técnica e Extensão Rural de Minas Gerais, 41 p. Retrieved October 03, 2018, from http://www.agricultura.mg.gov.br/images/files/Perfil%20da%20Agricultura%20Familiar%20v2.pdf.
  16. EMBRAPA. (2004). Sistemas Silvipastoris (Silvipastoris Systems). Retrieved March 30, 2018, from http://www.cnpf.embrapa.br/pesquisa/safs/.
  17. Ezeonu, I. C., & Ezeonu, F. C. (2000). The environment and global security. Environmentalist, 20, 41–48.  https://doi.org/10.1023/A:100665192733.CrossRefGoogle Scholar
  18. FMA. (2018). Compartilhando água. Fórum Mundial da Água 2018. Retrieved October 03, 2018, from http://www.worldwaterforum8.org/pt-br/node/943/.
  19. Freitas, G. A., Bendito, B. P. C., Dos Santos, A. C. M., & Sousa, P. A. (2016). Diagnóstico ambiental de áreas de pastagens degradadas no município de Gurupi-TO. Biota Amazônica, Macapá, 6(1), 10–15.  https://doi.org/10.18561/2179-5746/biotaamazonia.v6n1p10-15.CrossRefGoogle Scholar
  20. Gerhardt, J. (2014). Uso de conectividade florestal e aplicação da legislação ambiental para o planejamento da conservação de remanescentes da Mata Atlântica em área de uso agrícola. In TCC (Graduação em Ciências Biológicas), Universidade Federal do Rio Grande do Sul. Porto: Alegre-RS 34 p.Google Scholar
  21. Haase, D., Walz, U., Neubert, M., & Rosenberg, M. (2007). Changes to central European landscapes: Analysing historical maps to approach current environmental issues, examples from Saxony, Central Germany. Land Use Policy, 24(1), 248–263.CrossRefGoogle Scholar
  22. Huong, H. T. L., & Pathirana, A. (2013). Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrology and Earth System Sciences, 17, 379–394.  https://doi.org/10.5194/hess-17-379-2013.CrossRefGoogle Scholar
  23. IBGE. (2015). Cidades (Cities). Retrieved July 28, 2016, from http://www.cidades.ibge.gov.br/xtras/home.php.
  24. IEF. (1994). Pesquisas prioritárias para o Parque Estadual do Rio Doce, Brasil (Priority research for the Rio Doce State Park, Brazil). In Relatório Preliminar. Belo Horizonte: Instituto Estadual de Florestas 35p.Google Scholar
  25. IEF. (2002). Plano de Manejo do Parque Estadual do Rio Doce / PERD - Unidade de Conservação e Zona de Amortecimento – Encarte 4 (Management Plan of Rio Doce State Park / PERD - Conservation Unit and Buffer Zone - Encarte 4). Instituto Estadual de Florestas. Retrieved February 22, 2018, from http://www.ief.mg.gov.br/component/content/article/306.
  26. Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature, 423, 528–531.  https://doi.org/10.1038/nature01675.CrossRefGoogle Scholar
  27. Kamusoko, C., Aniya, M., Adi, B., & Manjoro, M. (2009). Rural sustainability under threat in Zimbabwe: Simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Applied Geography, 29, 435–447.  https://doi.org/10.1016/j.apgeog.2008.10.002.CrossRefGoogle Scholar
  28. Lang, S., & Blaschke, T. (2009). Análise da Paisagem com SIG. São Paulo: Oficina de Textos.Google Scholar
  29. Lenzi, C. L. (2006). Sociologia ambiental: risco e sustentabilidade na modernidade. São Paulo: Anpocs/Edusc.Google Scholar
  30. Lima, I. S. C. (2017). A influência da estrutura da paisagem, conectividade da paisagem e da qualidade do fragmento florestal sobre as propriedades das redes de aves frugívoras em ambiente urbano. In Dissertação (Mestrado em Ecologia e Conservação). Curitiba: Universidade Federal do Paraná 64 p.Google Scholar
  31. Liu, J., Zhou, H., Qin, P., Zhou, J., & Wang, G. (2009). Comparisons of ecosystem services among three conversion systems in Yancheng National Nature Reserve. Ecological Engineering, 35(5), 609–629.CrossRefGoogle Scholar
  32. Macedo, M. C. M., & Zimmer, A. H. (2018). DBO - Degradação e Recuperação de Pastagens (DBO - Pasture Degradation and Recovery). Campo Grande: Pesquisadores da Embrapa Gado de Corte 42p. Retrieved March 30, 2018, from https://www.alice.cnptia.embrapa.br/bitstream/doc/976514/1/DegradacaopastagensalternativasrecuperacaoMMacedoScot.pdf.Google Scholar
  33. Marengo, J. A. (2008). Água e mudanças climáticas. Estud. av., São Paulo, 22(63), 83–96.  https://doi.org/10.1590/S0103-40142008000200006.CrossRefGoogle Scholar
  34. Melo, L. D. E. M. (2001). O Parque Estadual do Rio Doce/MG e a qualidade de Vida da população de seu entorno (the State Park of Rio Doce/MG and the quality of life of the population of its surroundings). Dissertação (Mestrado em Economia Doméstica), Universidade Federal de Viçosa, Viçosa-MG, 128 p.Google Scholar
  35. Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: General synthesis. Washington, DC: Island Press and World Resources Institute.Google Scholar
  36. Mosca, A. A. D. O. (2008) Avaliação dos Impactos Ambientais de Plantações de Eucalipto no Cerrado com Base na Análise Comparativa do Ciclo Hidrológico e da Sustentatibilidade da Paisagem em duas Bacias de Segunda Ordem (Evaluation of the Environmental Impacts of Eucalyptus Plantations in the Cerrado on the basis of Comparative Analysis of the Hydrological Cycle and Sustainability of the Landscape in two Second Order Basins). Tese (Doutorado em Geografia Física), Universidade Federal de São Paulo, São Paulo-SP, 256 p.Google Scholar
  37. Motta, D., Silva, W. F. & Diniz, E. N. (2010). Rentabilidade na plantação do eucalipto. VII Simpósio de Excelência em Gestão e Tecnologia, 13p. Retrieved October 03, 2018, from https://www.aedb.br/seget/arquivos/artigos10/371_rentabilidade%20na%20plantacao%20de%20eucalipto.pdf.
  38. Oliveira, B. R., Carvalho-Ribeiro, S. M., & Maia-Barbosa, P. M. (2019). A multiscale analysis of land use dynamics in the buffer zone of Rio Doce State Park. Journal of Environmental Planning and Management, 63, 1–23.  https://doi.org/10.1080/09640568.2019.1617681.CrossRefGoogle Scholar
  39. ONU. (2014). World urbanization prospects: The 2014 revision, Highlights. United Nations, Department of Economic and Social Affairs, Population Division, 32 p. Retrieved October 03, 2018, from https://esa.un.org/unpd/wup/publications/files/wup2014-highlights.pdf.
  40. PELD. (2018). Programa de Pesquisas Ecológicas de Longa Duração (Long-Term Ecological Program). Retrieved February 12, 2018, from https://www2.icb.ufmg.br/limneapeld/site/index.php/projetos/peld.
  41. Peron, A. J., & Evangelista, A. R. (2004). Degradação de pastagens em regiões de cerrado. Ciênc. agrotec. Lavras, 28(3), 655–661.  https://doi.org/10.1590/S1413-70542004000300023.CrossRefGoogle Scholar
  42. PPAG. (2017). Programas e ações do PPAG - Agricultura familiar: Discussão participativa do PPAG revisão para 2018. Assembleia Legislativa de Minas Gerais, 36 p. Retrieved October 03, 2018, from https://www.almg.gov.br/export/sites/default/acompanhe/eventos/arquivo_morto/ppag_2017/documentos/programas-e-acoes/programas-acoes-agricultura-familiar.pdf.
  43. Ren, W., Zhong, Y., Meligrana, J., Anderson, B., Watt, W. E., Chen, J., & Leung, H. L. (2003). Urbanization, land use, and water quality in Shanghai: 1947–1996. Environment International, 29, 649–659.  https://doi.org/10.1016/S0160-4120(03)00051-5.CrossRefGoogle Scholar
  44. Rezende, R. V. B., Camello, T. C. F., & Rebelo, L. P. (2011). O eucalipto resseca o solo? Mito ou Verdade? E-publicações UERJ, 19 p. Retrieved October 03, 2018, from https://www.e-publicacoes.uerj.br/index.php/ric/article/download/3626/2530.
  45. Rezende, J. B., Pereira, J. R., & Botelho, D. O. (2013). Expansão da cultura do eucalipto nos municípios Mineiros e gestão territorial (expansion of the eucalyptus culture in the municipalities of Minas Gerais and territorial management). CERNE, 19(1), 1–7.  https://doi.org/10.1590/S0104-77602013000100001.CrossRefGoogle Scholar
  46. Rezende, F. S., Carriello, F., Rodriguez, D. A. & Neves, O. M. S. (2018). Revista Brasileira de Geografia Física, 11, 5, 1732–1747. Retrieved November 28, 2019, from https://periodicos.ufpe.br/revistas/rbgfe/article/view/234253/30952.
  47. Ribeiro, E. M., et al. (2007). Agricultura familiar e programas de desenvolvimento rural no Alto Jequitinhonha. Revista de Economia e Sociologia Rural, Brasília, 45(4), 1075–1102.  https://doi.org/10.1590/S0103-20032007000400012.CrossRefGoogle Scholar
  48. Ronquim, C. C. (2010). Queimada na colheita da cana-de-açúcar: impactos ambientais, sociais e econômicos. Empresa Brasileira de Pesquisa Agropecuária, Embrapa Monitoramento por Satélite Ministério da Agricultura, Pecuária e Abastecimento, 48 p. Retrieved October 03, 2018, from https://www.cnpm.embrapa.br/projetos/carbcana/download/ser_doc_77_queima_cana.pdf.
  49. Rosenberg, M., Syrbe, R. U., Vowinckel, J., & Walz, U. (2014). Scenario methodology for Modelling of future landscape developments as basis for assessing ecosystem services. Landscape Online, 33, 1–20.  https://doi.org/10.3097/LO.201433.CrossRefGoogle Scholar
  50. Rotmans, J., van Asselt, M., Anastasi, C., Greeuw, S., Mellors, J., Peters, S., Rothman, D., & Rijkens, N. (2000). Visions for a sustainable Europe. Futures, 32(9–10), 809–831.CrossRefGoogle Scholar
  51. RSC/UFMG. (2018). Dinamica EGO 4.0. Software de Modelagem Ambiental. Centro de Sensoriamento Remoto da UFMG. Retrieved October 03, 2018, from https://csr.ufmg.br/dinamica/.
  52. Saito, N. S., Moreira, M. A., Rosa, A., Eugenio, F. C., & Figueiredo, Á. C. (2016). Geotecnologia e Ecologia da Paisagem no Monitoramento da Fragmentação Florestal (Geotechnology and Landscape Ecology in Forest Fragmentation Monitoring). Floresta e Ambiente, 23(2), 201–210.CrossRefGoogle Scholar
  53. Santaella, M. & Paes, L. A. D. (1995). Utilização do fogo em cultura de cana-de-açúcar. I Fórum Nacional sobre Incêndios Florestais. Anais/IPEF, 3p. Retrieved October 03, 2018, from http://www.ipef.br/publicacoes/forum_incendios/cap02.pdf.
  54. Santelmann, M. V., White, D., Freemark, K., Nassauer, J. I., Eilers, J. M., Vaché, K. B., Danielson, B. J., Corry, R. C., Clark, M. E., Polasky, S., Cruse, R. M., Sifneos, J., Rustigian, H., Coiner, C., Wu, J., & Debinski, D. (2004). Assessing alternative futures for agriculture in Iowa, USA. Landscape Ecology, 19(4), S.357–S.374.CrossRefGoogle Scholar
  55. Santos, R. F. (2007). Vulnerabilidade Ambiental: desastres naturais ou fenômenos induzidos? Brasília: MMA Retrieved May 11, 2017, from www.modal.cetesb.sp.gov.br/portal/index.php?livros.Google Scholar
  56. Silva, M. N. (2012). A educação ambiental na sociedade atual e sua abordagem no ambiente escolar. Portal de e-governo, inclusão digital e sociedade do conhecimento. Retrieved Octover 03, 2018, from http://www.egov.ufsc.br/portal/conteudo/educa%C3%A7%C3%A3o-ambiental-na-sociedade-atual-e-sua-abordagem-no-ambiente-escolar.
  57. Soares-Filho, B., Rodrigues, H. O., & Costa, W. L. (2009). Guia de Uso – Dinamica EGO. Belo Horizonte-MG: Centro de Sensoriamento Remoto/UFMG.Google Scholar
  58. Soares-Filho, B., Raj, R., Merry, F., Rodrigues, H., & Santiago, L. (2016). Brazil’s market for trading Forest certificates. PLoS One, 11(4), 1–17.  https://doi.org/10.1371/journal.pone.0152311.CrossRefGoogle Scholar
  59. Solovjova, N. V. (1999). Synthesis of ecosystemic and ecoscreening modelling in solving problems of ecological safety. Ecological Modelling, 124, 1–10.  https://doi.org/10.1016/S0304-3800(99)00122-2.CrossRefGoogle Scholar
  60. Souza, C. G., Zanella, L., Borém, R. A. T., Carvalho, L. M. T. C., Alves, H. M. R., & Volpato, M. M. L. (2014). Análise da fragmentação florestal da Área de Proteção Ambiental Coqueiral, Coqueiral – MG. Ciência Florestal, Santa Maria, 24(3), 631–644 Retrieved October 03, 2018, from https://periodicos.ufsm.br/cienciaflorestal/article/view/3102/pdf.Google Scholar
  61. Su, S., Ma, X., & Xiao, R. (2013). Agricultural landscape pattern changes in response to urbanization at ecoregional scale. Ecological Indicators, 40, 10–18.  https://doi.org/10.1016/j.ecolind.2013.12.013.CrossRefGoogle Scholar
  62. TEEB. (2009). TEEB For Policymakers. The economics of Ecosystems & Biodiversity. TEEB DE (2013). Retrieved October 03, from http://www.teebweb.org/wpcontent/uploads/study%20and%20Reports/reports/synthesis%20report/Synthesis_German.pdf.
  63. Telles, C. A. & Silva, G. L. F. (2012). Relação criança e meio ambiente: Avaliação da percepção ambiental através da análise do desenho infantil. Tecnoeng, 6ª ed., 27 p. Retrieved October 03, 2018, from https://www.researchgate.net/publication/261474628_RELACAO_CRIANCA_E_MEIO_AMBIENTE_Avaliacao_da_percepcao_ambiental_atraves_da_analise_do_desenho_infantil.
  64. United Nations General Assembly. (1987). Report of the world commission on environment and development: Our common future. Oslo, Norway: United Nations general assembly, Development and International Co-operation: Environment. Retrieved December 08, 2018, from http://www.un-documents.net/our-common-future.pdf.
  65. Vital, M. H. F. (2007). Impacto Ambiental de Florestas de Eucalipto (environmental impact of Eucalyptus forests). Revista do BNDES, 14(28), 235–276.Google Scholar
  66. Walz, A., Lardelli, C., Behrendt, H., Grêt-Regamie, A., Lundström, C., Kytzia, S., & Bebi, P. (2007). Participatory scenario analysis for integrated regional modelling. Landscape and Urban Planning, 81(1–2), 114–131.CrossRefGoogle Scholar
  67. WWAP. (2018). The United Nations World Water Development Report 2018: Nature-Based Solutions for Water. United Nations world water assessment Programme / UN-Water, Paris, UNESCO, 154 p. Retrieved October 03, 2018, from http://unesdoc.unesco.org/images/0026/002614/261424e.pdf.
  68. Xavier, A. P. C., & Silva, R. M. S. (2018). A GIS-based method for temporal dynamic modelling of the land use and land cover in the Tapacurá river basin (PE). São Paulo, UNESP. Geociências, 37(1), 193–210.Google Scholar
  69. Yue, T. X., Liu, J. Y., Jørgensen, S. E., & Ye, Q. H. (2003). Landscape change detection of the newly created wetland in Yellow River Delta. Ecological Modelling, 164, 21–31.  https://doi.org/10.1016/S0304-3800(02)00391-5.CrossRefGoogle Scholar
  70. Zanine, A. M., Santos, E. M. & Ferreira, D. J. (2005). Possíveis causas da degradação de pastagens. Revista Eletrônica de Veterinária REDVET, v. VI, n. 11, 23 p. Retrieved October 03, 2018, from http://www.veterinaria.org/revistas/redvet/n111105/110509.pdf.
  71. Zhou, S., Huang, Y., Yu, B., & Wang, G. (2014). Effects of human activities on the eco-environment in the middle Heihe River basin based on an extended environmental Kuznets curve model. Ecological Engineering, 76, 14–26.  https://doi.org/10.1016/j.ecoleng.2014.04.020.CrossRefGoogle Scholar
  72. Zulauf, W. E. (2000). O meio ambiente e o futuro. Estud. av., São Paulo, 14(39), 85–100.  https://doi.org/10.1590/S0103-40142000000200009.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Biological Sciences (ICB), Department of General Biology, I3-253Federal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Institute of Geosciences (IGC), Departament of CartographyFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations