Advertisement

Soil enzyme response to bisphenol F contamination in the soil bioaugmented using bacterial and mould fungal consortium

Abstract

The concept of the study resulted from the lack of accurate data on the toxicity of bisphenol F (BPF) coinciding with the need for immediate changes in the global economic policy eliminating the effects of environmental contamination with bisphenol A (BPA). The aim of the experiment was to determine the scale of the previously unstudied inhibitory effect of BPF on soil biochemical activity. To this end, in a soil subjected to increasing BPF pressure at three contamination levels of 0, 5, 50 and 500 mg BPF kg−1 DM, responses of soil enzymes, dehydrogenases, catalase, urease, acid phosphatase, alkaline phosphatase, arylsulphatase and β-glucosidase, were examined. Moreover, the study suggested a potentially effective way of biostimulating the soil by means of bioaugmentation with a consortium of four bacterial species: Pseudomonas umsongensis, Bacillus mycoides, Bacillus weihenstephanensis and Bacillus subtilis, and the following fungal species: Mucor circinelloides, Penicillium daleae, Penicillium chrysogenum and Aspergillus niger. It was found that BPF was a controversial BPA analogue due to the fact that it contributed to the inhibition of all the enzyme activities. Dehydrogenases proved to be the most sensitive to bisphenol contamination of the soil. The addition of 5 mg BPF kg−1 DM of soil triggered an escalation of the inhibition comparable to that for the other enzymes only after exposing them to the effects of 50 and 500 mg BPF kg−1 DM of soil. Moreover, BPF generated low activity of urease, acid phosphatase, alkaline phosphatase and β-glucosidase. Bacterial inoculum increased the activity of urease, β-glucosidase, catalase and alkaline phosphatase. Seventy-six percent of BPF underwent biodegradation during the 5 days of the study.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Alef, K., & Nannipieri, P. (1998). Methods in applied soil. In Microbiology and biochemistry (p. 576). London: Academic Press.

  2. Bai, N., Wang, S., Sun, P., Abuduaini, R., Zhu, X., & Zhao, Y. (2018). Degradation of nonylphenol polyethoxylates by functionalized Fe3O4 nanoparticle-immobilized Sphingomonas sp Y2. Science of the Total Environment, 615, 462–468. https://doi.org/10.1016/j.scitotenv.2017.09.290.

  3. Borowik, A., Wyszkowska, J., & Wyszkowski, M. (2017). Resistance of aerobic microorganisms and soil enzyme response to soil contamination with Ekodiesel Ultra fuel. Environmental Science and Pollution Research, 24(31), 24346–24363. https://doi.org/10.1007/s11356-017-0076-1.

  4. Brunel-Muguet, S., Mollier, A., Kauffmann, F., Avice, J.-C., Goudier, D., Sénécal, E., & Etienne, P. (2015). SuMoToRI, an ecophysiological model to predict growth and sulfur allocation and partitioning in oilseed rape (Brassica napus L.) until the onset of pod formation. Frontiers in Plant Science, 6(993), 1–14. https://doi.org/10.3389/fpls.2015.00993.

  5. Burns, R. G., De Forest, J. L., Marxsen, J., Sinsabaugh, R. L., Stromberger, M. E., Wallenstein, M. D., Weintraub, M. N., & Zoppini, A. (2013). Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology and Biochemistry, 58, 216–234. https://doi.org/10.1016/j.soilbio.2012.11.009.

  6. Cabaton, N., Dumont, C., Severinm, I., Perdu, E., Zalko, D., Cherkaoui-Malki, M., & Chagnon, M. C. (2009). Genotoxic and endocrine activities of bis(hydroxyphenyl) methane (bisphenol F) and its derivatives in the HepG2 cell line. Toxicology, 255, 15–24. https://doi.org/10.1016/j.tox.2008.09.024.

  7. Cajthaml, T., Křesinová, Z., Svobodová, K., & Möder, M. (2009). Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere, 75, 745–750. https://doi.org/10.1016/j.chemosphere.2009.01.034.

  8. Cao, X. L., Perez-Locas, C., Dufresne, G., Clement, G., Popovic, S., Beraldin, F., Dabeka, R. W., & Feeley, M. (2011). Concentrations of bisphenol A in thecomposite food samples from the 2008 Canadian total diet study in Quebec City and dietary intake estimates. Food Additives and Contaminants, 28(6), 791–798. https://doi.org/10.1080/19440049.2010.513015.

  9. Chen, D., Kannan, K., Tan, H., Zheng, Z., Feng, Y., Wu, Y., & Widelka, M. (2016). Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity - a review. Environmental Science & Technology, 50, 5438–5453. https://doi.org/10.1021/acs.est.5b05387.

  10. Cheynier, V., Comte, G., Davies, K. M., Lattanzio, V., & Martens, S. (2013). Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry, 72, 1–20. https://doi.org/10.1016/j.plaphy.2013.05.009.

  11. Chris Felshia, S., Aswin Karthick, N., Thilagam, R., Chandralekha, A., Raghavarao, K., & Gnanamani, A. (2017). Efficacy of free and encapsulated Bacillus licheniformis strain SL10 on degradation of phenol: a comparative study of degradation kinetics. Journal of Environmental Management, 197, 373–383. https://doi.org/10.1016/j.jenvman.2017.04.005.

  12. Crathorne, B., Palmer, C. P., & Stanley, J. A. (1986). High-performance liquid chromatographic determination of bisphenol A diglycidyl ether and bisphenol F diglycidyl ether in water. Journal of Chromatography A, 260, 266–270. https://doi.org/10.1016/j.chroma.2004.12.092.

  13. Danzl, E., Sei, K., Soda, S., Ike, M., & Fujita, M. (2009). Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater. International Journal of Environmental Research and Public Health, 6, 1472–1484. https://doi.org/10.3390/ijerph6041472.

  14. Daudzai, Z., Treesubsuntorn, C., & Thiravetyan, P. (2018). Inoculated Clitoria ternatea with Bacillus cereus ERBP for enhancing gaseous ethylbenzene phytoremediation: plant metabolites and expression of ethylbenzene degradation genes. Ecotoxicology and Environmental Safety, 164, 50–60. https://doi.org/10.1016/j.ecoenv.2018.07.121.

  15. del Carmen Martínez-Ballesta, M., Moreno, D., & Carvajal, M. (2013). The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. International Journal of Molecular Sciences, 14, 11607–11625. https://doi.org/10.3390/ijms140611607.

  16. Dhanjai, L., Sinha, A., Wu, L., Lu, X., Chen, J., & Jain, R. (2018). Advances in sensing and biosensing of bisphenols: a review. Analytica Chimica Acta, 998, 1–27. https://doi.org/10.1016/j.aca.2017.09.048.

  17. Dhiman, S. S., Selvaraj, C., Jinglin, L., Singh, R., Zhao, X., Kim, D., Kim, Y., Jae, Y., Kang, C., & Jung-Kul, L. (2016). Phytoremediation of metal-contaminated soils by the hyperaccumulator canola (Brassica napus L.) and the use of its biomass for ethanol production. Fuel, 183, 107–114. https://doi.org/10.1016/j.fuel.2016.06.025.

  18. Divyateja, D., Konapalli, P., Sridevi, V., & Radhika, P. (2018). Cell phenotyping of Pseudomonas sp. strain DT-4 capable of degrading phenol using gen III; optimization. Materials Today: Proceedings, 5, 17857–17865. https://doi.org/10.1016/j.matpr.2018.06.112.

  19. Dotaniya, M. L., Aparna, K., Dotaniya, C. K., Singh, M., & Regar, K. L. (2019). Chapter 33 - role of soil enzymes in sustainable crop production. Enzymes in Food Biotechnology Production, Applications, and Future Prospects, 569–589. https://doi.org/10.1016/B978-0-12-813280-7.00033-5.

  20. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes,bFlavourings and Processing Aids). (2015). Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs: executive summary. The EFSA Journal, 13(1), 3978–4001.

  21. European Chemicals Agency (ECHA) (2017). Member state committee support document for identification of 4,4′-isopropylidenediphenol(BPA) as a substance of very high concern because of its endocrine disrupting properties which cause probable serious effects to human health which give rise to an equivalent level of concern to those of CMR and PBR/vPvB substances. Adopted on 06 march 2019.

  22. FAO (2017). Available at: http://www.fao.org/faostat/en/#data/QC. Accessed 13 March 2019.

  23. Feng, Y., Yin, J., Jiao, Z., Shi, J., Li, M., & Shao, B. (2012). Bisphenol AF may cause testosterone reduction by directly affecting testis function in adult male rats. Toxicology Letters, 211, 201–209. https://doi.org/10.1016/j.toxlet.2012.03.802.

  24. Fromme, H., Küchler, T., Otto, T., Pilz, K., Müller, J., & Wenzel, A. (2002). Occurrence of phthalates and bisphenol A and F in the environment. Water Research, 36(6), 1429–1438. https://doi.org/10.1016/S0043-1354(01)00367-0.

  25. Gianfreda, L. (2015). Enzymes of importance to rhizosphere processes. Journal of Soil Science and Plant Nutrition, 15(2), 283–306. https://doi.org/10.4067/S0718-95162015005000022.

  26. Grob, K., Spinner, C., Brunner, M., & Etter, R. (1999). The migration from the internal coatings of food cans; summary of the findings and call for more effective regulation of polymers in contact with foods: a review. Food Additives & Contaminants, 16(12), 579–590. https://doi.org/10.1080/026520399283722.

  27. Gu, X. B., Cai, H. J., Du, Y. D., & Li, Y. N. (2019). Effects of film mulching and nitrogen fertilization on rhizosphere soil environment, root growth and nutrient uptake of winter oilseed rape in Northwest China. Soil & Tillage Research, 187, 194–203. https://doi.org/10.1016/j.still.2018.12.009.

  28. Guo, X., Liu, Y., Sun, F., Zhou, D., Guo, R., Dong, T., Chen, Y., Ji, R., & Chen, J. (2019). Fate of 14C-bisphenol F isomers in an oxic soil and the effects of earthworm. Science of the Total Environment, 657(20), 254–261. https://doi.org/10.1016/j.scitotenv.2018.12.032.

  29. Hąc-Wydro, K., Połeć, K., & Broniatowski, M. (2019). The comparative analysis of the effect of environmental toxicants: Bisphenol A, S and F on model plant, fungi and bacteria membranes. The studies on multicomponent systems. Journal of Molecular Liquids, 289, 111136. https://doi.org/10.1016/j.molliq.2019.111136.

  30. Horta, L. P., Mota, Y. C. C., Barbosa, G. M., Braga, T., Marriel, I. E., Fátima, A., & Modolo, L. V. (2016). Urease inhibitors of agricultural interest inspired by structures of plant phenolic aldehydes. Journal of the Brazilian Chemical Society, 27(8), 1512–1519. https://doi.org/10.21577/0103-5053.20160208.

  31. HSDB (2013). U.S. national library of medicine’s hazardous substances data bank. 1,1′-methylenebisbenzene, CASRN: 101-81-5, UNII: K3E387I0BC. Last Revision Date: 2013/03/08 Available at: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/∼38wDR1:1, Accessed 06 March 2019.

  32. Hugentobler, K. G., & Müller, M. (2018). Towards semisynthetic natural compounds with a biaryl axis: Oxidative phenol coupling in Aspergillus niger. Bioorganic & Medicinal Chemistry, 26, 1374–1377. https://doi.org/10.1016/j.bmc.2017.08.008.

  33. Im, J., Prevatte, C. W., Campagna, S. R., & Löffler, F. E. (2015). Identification of 4-hydroxycumyl alcohol as the major MnO2-mediated bisphenol A transformation product and evaluation of its environmental fate. Environmental Science & Technology, 49, 6214–6221. https://doi.org/10.1021/acs.est.5b00372.

  34. Inoue, K., Murayama, S., Takeba, K., Yoshimura, Y., & Nakazawa, H. (2003). Contamination of xenoestrogens bisphenol A and F in honey: safety assessment and analytical method of these compounds in honey. Journal of Food Composition and Analysis, 16, 497–506. https://doi.org/10.1016/S0889-1575(03)00018-8.

  35. Institute of Environment and Health (IEH) (2012). A review of latest endocrine disrupting chemicals research implications for drinking water. Final Report DWI:70/2/266 Cranfield University, UK Available at: http://dwi.defra.gov.uk/research/completed-research/reports/DWI70_2_266.pdf.

  36. Ishida, M., Hara, M., Fukino, N., Kakizaki, T., & Morimitsu, Y. (2014). Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breeding Science, 64, 48–59. https://doi.org/10.1270/jsbbs.64.48.

  37. IUSS Working Group WRB (2014). World reference base for soil resources: International soil classification system for naming soils and creating legends for soil maps. Rome, FAO.

  38. Jordakova, I., Dobias, J., Voldrich, M., & Poustka, J. (2003). Determination of bisphenol A, bisphenol F, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, migrated. From food cans using gas chromatography-mass spectrometry. Czech Journal of Food Sciences, 21(3), 85–90. https://doi.org/10.17221/3481-CJFS.

  39. Journal of Laws No. 1, item 1395 (2016). Regulation of the minister of the environment of September 1, 2016 on the way of assessing the pollution of the earth's surface.

  40. Kea, Q., Zhanga, Y., Wu, X., Sua, X., Wang, Y., Lina, H., Mei, R., Zhang, Y., Hashmic, M. Z., Chend, C., & Chena, J. (2018). Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers. Journal of Environmental Management, 222, 185–189. https://doi.org/10.1016/j.jenvman.2018.05.061.

  41. Kucharski, J., Tomkiel, M., Baćmaga, M., Borowik, A., & Wyszkowska, J. (2016). Enzyme activity and microorganisms diversity in soil contaminated with the Boreal 58 WG. Journal of Environmental Science and Health, Part B, 51(7), 446–454. https://doi.org/10.1080/03601234.2016.1159456.

  42. Lee, S., Liao, C., Song, G. J., Kongtae, R., Kannan, K., & Moon, H. B. (2015). Emission of bisphenol analogues including bisphenol A and bisphenol F from wastewater treatment plants in Korea. Chemosphere, 119, 1000–1006. https://doi.org/10.1016/j.chemosphere.2014.09.011.

  43. Leitão, A. L., Duarte, M. P., & Santos Oliveira, J. (2007). Degradation of phenol by a halotolerant strain of Penicillium chrysogenum. International Biodeterioration & Biodegradation, 59, 220–225. https://doi.org/10.1016/j.ibiod.2006.09.009.

  44. Li, F., Wang, J., Nastold, P., Jiang, B., Sun, F., Zenker, A., Kolvenbach, B. A., Ji, R., & François-Xavier Corvini, P. (2014). Fate and metabolism of tetrabromobisphenol A in soil slurries without and with the amendment with the alkylphenol degrading bacterium Sphingomonas sp. strain TTNP3. Environmental Pollution, 193, 181–188. https://doi.org/10.1016/j.envpol.2014.06.030.

  45. Li, F., Jiang, B., Nastold, P., Kolvenbach, B. A., Chen, J., Wang, L., Guo, H., François-Xavier Corvini, P., & Ji, R. (2015). Enhanced transformation of tetrabromobisphenol A by nitrifiers in nitrifying activated sludge. Environmental Science & Technology, 49, 4283–4292. https://doi.org/10.1021/es5059007.

  46. Li, Z., Zhang, Y., Wang, Y., Mei, R., Zhang, Y., Hashmi, M. Z., Lin, H., & Su, X. (2018). A new approach of Rpf addition to explore bacterial consortium for enhanced phenol degradation under high salinity conditions. Current Microbiology, 75(8), 1046–1054. https://doi.org/10.1007/s00284-018-1489-x.

  47. Li, Z., Cui, J., Mi, Z., Tiana, D., Wang, J., Ma, Z., Wang, B., Chen, H. Y. H., & Niu, S. (2019). Responses of soil enzymatic activities to transgenic Bacillus thuringiensis (Bt) crops - a global meta-analysis. Science of the Total Environment, 651, 1830–1838. https://doi.org/10.1016/j.scitotenv.2018.10.073.

  48. Liao, C., & Kannan, K. (2014). A survey of alkylphenols, bisphenols, and triclosan in personal care products from China and the United States. Archives of Environmental Contamination and Toxicology, 67, 50–59. https://doi.org/10.1007/s00244-014-0016-8.

  49. Lipińska, A., Kucharski, J., & Wyszkowska, J. (2014). The effect of polycyclic aromatic hydrocarbons on the structure of organotrophic bacteria and dehydrogenase activity in soil. Polycyclic Aromatic Compounds, 34(1), 35–53. https://doi.org/10.1080/10406638.2013.844175.

  50. Liu, Y. D., Su, X. M., Lu, L., Ding, L. X., & Shen, C. F. (2016). A novel approach to enhance biological nutrient removal using a culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (Rpf) in SBR process. Environmental Science and Pollution Research, 23, 4498–4508. https://doi.org/10.1007/s11356-015-5603-3.

  51. Liu, J. W., Pan, D. D., Wu, X. W., Chen, H. Y., Cao, H., Li, Q. X., & Hua, R. (2018). Enhanced degradation of prometryn and other s-triazine herbicides in pure cultures and wastewater by polyvinyl alcohol-sodium alginate immobilized Leucobacter sp. JW-1. Science of the Total Environment, 615, 78–86. https://doi.org/10.1016/j.scitotenv.2017.09.208.

  52. Lu, Z., Lin, K., & Gan, J. (2011). Oxidation of bisphenol F (BPF) by manganese dioxide. Environmental Pollution, 159, 2546–2551. https://doi.org/10.1016/j.envpol.2011.06.016.

  53. Modolo, L. V., Silva, C. J., Brandão, D. S., & Chaves, I. S. (2018). Minireview on what we have learned about urease inhibitors of agricultural interest since mid-2000sq. Journal of Advanced Research, 13, 29–37. https://doi.org/10.1016/j.jare.2018.04.001.

  54. Niu, Z., Jia, Y., Chen, Y., Hu, Y., Chen, J., & Lv, Y. (2018). Positive effects of bio-nano Pd (0) toward direct electron transfer in Pseudomonas putida and phenol biodegradation. Ecotoxicology and Environmental Safety, 161, 356–363. https://doi.org/10.1016/j.ecoenv.2018.06.011.

  55. OHAT (2012). Office of Environmental Health Hazard Assessment. Biomonitoring California: p,p’-bisphenols and diglycidyl ethers of p,p’-bisphenols. 2012. Available: http://www.oehha.ca.gov/multimedia/biomon/pdf/041113Bisphenols_priority.pdf (Accessed 6 March 2019).

  56. Öhlinger, R. (1996). Dehydrogenases activity with the substrate TTC. In F. Schinner, R. Öhlinger, E. Kandele, & R. Margesin (Eds.), Methods in soil biology (p. 241). Berlin: Springer Verlag. 2001.

  57. Ono, E., Homma, Y., Horikawa, M., Kunikane-Doi, S., Imai, H., Takahashi, S., Kawai, Y., Ishiguro, M., Fukui, Y., & Nakayama, T. (2010). Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines (Vitis vinifera). Plant Cell, 22, 2856–2871. https://doi.org/10.1105/tpc.110.074625.

  58. Ort, M. R., & Mass, W. (1983). Process for making bis(hydroxyphenyl) methanes, Patent US 4400554.

  59. Orwin, K. H., & Wardle, D. A. (2004). New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biology and Biochemistry, 36, 1907–1912. https://doi.org/10.1016/j.soilbio.2004.04.036.

  60. Park, J. C., Lee, M. C., Yoon, D. S., Han, J., Hwang, K. M., Jung, J. H., & Lee, J. S. (2018). Effects of bisphenol A and its analogs bisphenol F and S on life parameters, antioxidant system, and response of defensome in themarine rotifer Brachionus koreanus. Aquatic Toxicology, 199, 21–29. https://doi.org/10.1016/j.aquatox.2018.03.024.

  61. Pérez, R. A., Albero, B., Ferriz, M., & Tadeo, J. L. (2017). Rapid multiresidue determination of bisphenol analogues in soil with on-line derivatization. Analytical and Bioanalytical Chemistry, 409, 4571–4580. https://doi.org/10.1007/s00216-017-0399-2.

  62. Peyton, B. M., Wilson, T., & Yonge, D. R. (2002). Kinetics of phenol biodegradation in high salt solutions. Water Research, 36, 4811–4820. https://doi.org/10.1016/S0043-1354(02)00200-2.

  63. Preisner, M., Wojtasik, W., Kostyn, K., Boba, A., Czuj, T., Szopa, J., & Kulma, A. (2018). The cinnamyl alcohol dehydrogenase family in flax: differentiation during plant growth and under stress conditions. Journal of Plant Physiology, 221, 132–143. https://doi.org/10.1016/j.jplph.2017.11.015.

  64. Saeed, A., Mahesar, P. A., Channar, P. A., Larik, F. A., Abbas, Q., Hassan, M., Raza, H., & Seo, S. Y. (2017). Hybrid pharmacophoric approach in the design and synthesis of coumarin linked pyrazolinyl as urease inhibitors, kinetic mechanism and molecular docking. Chemistry & Biodiversity, 14(8), e1700035. https://doi.org/10.1002/cbdv.201700035.

  65. Schimel, J., Becerra, C. A., & Blankinship, J. (2017). Estimating decay dynamics for enzyme activities in soils from different ecosystems. Soil Biology & Biochemistry, 114, 5–11. https://doi.org/10.1016/j.soilbio.2017.06.023.

  66. Schöpel, M., Herrmann, C., Scherkenbeck, J., & Stoll, R. (2016). The bisphenol A analogue bisphenol S binds to k-ras4b – implications for ‘BPA-free’ plastics. FEBS Letters, 590(3), 369–375. https://doi.org/10.1002/1873-3468.12056.

  67. Senthilvelan, T., Kanagaraj, J., Panda, R. C., & Mandal, A. B. (2014). Biodegradation of phenol by mixed microbial culture: an eco-friendly approach for the pollution reduction. Clean Technologies and Environmental Policy, 16(1), 113–126. https://doi.org/10.1007/s10098-013-0598-2.

  68. Singh, U., Arorab, N. K., & Sachan, P. (2018). Simultaneous biodegradation of phenol and cyanide present in coke-oven effluent using immobilized Pseudomonas putida and Pseudomonas stutzeri. Brazilian Journal of Microbiology, 49, 38–44. https://doi.org/10.1016/j.bjm.2016.12.013.

  69. Sivasubramanian, S., Karthick, S., & Namasivayam, R. (2015). Phenol degradation studies using microbial consortium isolated from environmental sources. Journal of Environmental Chemical Engineering, 3(1), 243–252. https://doi.org/10.1016/j.jece.2014.12.014.

  70. Sivitskaya, V., & Wyszkowski, M. (2013). Changes in the content of some macroelements in maize (Zea mays L.) under effect of fuel oil after application of different substances to soil. Journal of Elementology, 8, 705–714.

  71. Statsoft Inc (2018). Data Analysis Software System. Version 12.0. Available at: http://www.statsoft.com

  72. Su, X. M., Liu, Y. D., Hashmi, M. Z., Ding, L. X., & Shen, C. F. (2015). Culture-dependent andculture-independent characterization of potentially functional biphenyl-degrading bacterial community in response to extracellular organic matter from Micrococcus luteus. Microbial Biotechnology, 8, 569–578. https://doi.org/10.1111/1751-7915.12266.

  73. Su, X. M., Wang, Y. Y., Xue, B. B., Zhang, Y. G., Mei, R. W., Zhang, Y., Hashmi, M. Z., Lin, H., Chen, J., & Sun, F. (2018). Resuscitation of functional bacterial community for enhancing biodegradation of phenol under high salinity conditions based on Rpf. Bioresource Technology, 261, 394–402. https://doi.org/10.1016/j.biortech.2018.04.048.

  74. Szaleniec, M., Borowski, T., Schühle, K., Witko, M., & Heider, J. (2010). Ab inito modeling of ethylbenzene dehydrogenase reaction mechanism. Journal of the American Chemical Society, 132, 6014–6024. https://doi.org/10.1021/ja907208k.

  75. Tanaka, Y., Sasaki, N., & Ohmiya, A. (2008). Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant Journal, 54, 733–749. https://doi.org/10.1111/j.1365-313X.2008.03447.x.

  76. Tuta-Navajas, G., Gutierrez-Avila, K., Roa-Prada, S., & Chalela-Alvarez, G. (2018). Experimental development of a biosensor system to measure the concentration of phenol diluted in water using alternative sources of oxidoreductase enzymes. Analytica Chimica Acta, 1040, 128–135. https://doi.org/10.1016/j.aca.2018.08.007.

  77. Voss-Fels, K. P., Snowdon, R. J., & Hickey, L. T. (2018). Designer roots for future crops. Trends in Plant Science, 23(11), 957–960. https://doi.org/10.1016/j.tplants.2018.08.004.

  78. Wang, Q., Wu, Z. M., Li, Y. F., Tan, Y., Liu, N., & Liu, Y. J. (2014). The efficient hydroxyalkylation of phenol with formaldehyde to bisphenol F over a thermoregulated phase-separable reaction system containing a water-soluble Brønsted acidic ionic liquid. RSC Advances, 4, 33466–33473. https://doi.org/10.1039/C4RA02827A.

  79. Wang, H., Zhao, Y. P., Zhu, Y. J., & Shen, J. Y. (2016). Spectral properties of bisphenol F based on quantum chemical calculations. Vacuum, 128, 198–204. https://doi.org/10.1016/j.vacuum.2016.03.024.

  80. Wiedermann, M. M., Kane, E. S., Veverica, T. J., & Lilleskov, E. A. (2017). Are colorimetric assays appropriate for measuring phenol oxidase activity in peat soils? Soil Biology and Biochemistry, 105, 108–110. https://doi.org/10.1016/j.soilbio.2016.11.019.

  81. Wyszkowska, J., & Wyszkowski, M. (2006). Role of compost, bentonite and lime in recovering the biochemical equilibrium of diesel oil contaminated soil. Plant, Soil and Environment, 52(11), 505–514. https://doi.org/10.17221/3541-pse.

  82. Wyszkowska, J., Boros-Lajszner, E., Lajszner, W., & Kucharski, J. (2017). Reaction of soil enzymes and spring barley to copper chloride and copper sulphate. Environmental Earth Sciences, 76, 403–414. https://doi.org/10.1007/s12665-017-6742-2.

  83. Xu, J., Sheng, G. P., Ma, Y., Wang, L. F., & Yu, H. Q. (2013). Roles of extracellular polymeric substances (EPS) in the migration and removal of sulfamethazine in activated sludge system. Water Research, 47(14), 5298–5306. https://doi.org/10.1016/j.watres.2013.06.009.

  84. Xue, F., Xiangju, Y., Tong, Q., Xiu, Y., & Huang, H. (2018). Heterologous over expression of Pseudomonas umsongensis halohydrin dehalogenase in Escherichia coli and its application in epoxide asymmetric ring opening reactions. Process Biochemistry, 75, 139–145. https://doi.org/10.1016/j.procbio.2018.09.018.

  85. Yan, L., Liu, Y., Wen, Y., Ren, Y., Hao, G., & Zhang, Y. (2014). Role and significance of extracellular polymeric substances from granular sludge for simultaneous removal of organic matter and ammonia nitrogen. Bioresource Technology, 179C, 460–466. https://doi.org/10.1016/j.biortech.2014.12.042.

  86. Yan, Z., Liu, Y., Yan, K., Wu, S., Han, Z., & Guo, R. (2017). Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes: occurrence, distribution, source apportionment, and ecological and human health risk. Chemosphere, 184, 318–328. https://doi.org/10.1016/j.chemosphere.2017.06.010.

  87. Zaborowska, M., Kucharski, J., & Wyszkowska, J. (2017). Brown algae and basalt meal in maintaining the activity of arylsulfatase of soil polluted with cadmium. Water, Air, and Soil Pollution, 228(8), 1–13. https://doi.org/10.1007/s11270-017-3449-7.

  88. Zaborowska, M., Kucharski, J., & Wyszkowska, J. (2018). Biochemical and microbiological activity of soil contaminated with o-cresol and biostimulated with Perna canaliculus mussel meal. Environmental Monitoring and Assessment, 190, 602. https://doi.org/10.1007/s10661-018-6979-6.

  89. Zaborska, W., Krajewska, B., Kot, M., & Karcz, W. (2007). Quinone-induced inhibition of urease: elucidation of its mechanisms by probing thiol groups of the enzyme. Bioorganic Chemistry, 35(3), 233–242.

Download references

Author information

Correspondence to Jadwiga Wyszkowska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zaborowska, M., Wyszkowska, J. & Kucharski, J. Soil enzyme response to bisphenol F contamination in the soil bioaugmented using bacterial and mould fungal consortium. Environ Monit Assess 192, 20 (2020) doi:10.1007/s10661-019-7999-6

Download citation

Keywords

  • BPF
  • Biochemical activity
  • Soil
  • Bioaugmentation
  • Bacterial consortium
  • Mould fungi consortium