Analyzing the toxicity of bisphenol-A to microalgae for ecotoxicological applications

  • Valéria Gomes Oliveira Falcão
  • Diego de Carvalho Carneiro
  • Solange Andrade Pereira
  • Magnus Régios Dias da Silva
  • Antônio Alfa Candé
  • Suzana Telles da Cunha LimaEmail author


Bisphenol-A (BPA) is a chemical used in the production of polycarbonate plastic and epoxy resins that may be related to the occurrence of human endocrine disorders. The present study aims to indicate a microalgae for use in ecotoxicological tests concerning BPA contamination of aquatic environments by analyzing its toxicity for the freshwater species Pseudokirchneriella subcapitata, and the two marine species Tetraselmis chuii and Skeletonema costatum. The standardization of the test involved determination of suitable nominal concentrations of BPA and the most appropriate species for use as biomarkers. S. costatum and P. subcapitata demonstrated resistance to BPA, features that are not of interest for toxicity markers. T. chuii presented an adequate sensitivity to BPA, compatible with parameters used in human toxicology for this substance, and is indicated as a potential biomarker for the presence of BPA in marine environments. The IC50 of T. chuii was 2.5 μM with R2 = 0.9, indicating reliability to demonstrate that low concentrations of BPA has significant toxicity to this species.


Ecotoxicology Plastic Inhibitory concentration Endocrine disruptor 



The authors would like to acknowledge Pró-Integração CAPES for the financial support.


  1. Arantes, P. B. (2010). Influência do herbicida glifosato (N-(fosfometil) glicina) na formação de biomassa da alga Pseudokirchneriella subcapitata (Chlorophyceae). Universidade Estadual Paulista. Accessed 05 June 2019.
  2. ASTM - American Society for Testing Materials. (2012). Standard guide for conducting static 96 h toxicity tests with microalgae, E1218-90 (pp. 874–885). West Conshohocken: ASTM International.Google Scholar
  3. Environment Canada (1990). Guidance document on control of toxicity test precision using reference toxicants report EPS 1/RM/12. Environmental Technology Centre. Accessed 05 June 2019.
  4. FAO/WHO - Food and Agriculture Organization / World Health Organization (2010). Toxicological and health aspects of bisphenol A. WHO Press. Accessed 05 June 2019.
  5. Goodman, J. E., Peterson, M. K., Hixon, M. L., & Shubin, S. P. (2017). Derivation of an oral maximum allowable dose level for Bisphenol A. Regulatory Toxicology and Pharmacology, 86, 312–318. Scholar
  6. Hamilton, M. A., Russo, R. C., & Thurston, R. V. (1977). Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environmental Science & Technology, 11, 714–718. Scholar
  7. Kang, J. H., Kondo, F., & Katayama, Y. (2006). Human exposure to bisphenol A. Toxicology, 226, 79–89. Scholar
  8. Lin, M., Tseng, Y. H., & Huang, C. P. (2015). Interactions between nano-TiO 2 particles and algal cells at moderate particle concentration. Frontiers of Chemical Science and Engineering, 9, 242–257. Scholar
  9. Lourenço, S. O. (2006). Cultivo de microalgas marinhas: princípios e aplicações. São Carlos: RiMa.Google Scholar
  10. Magalhães, D. P., & Ferrão-Filho, A. S. (2008). Ecotoxicology as a tool to monitoring aquatic ecosystems. Oecologia Australis, 12, 355–381. Scholar
  11. Mendes, M. C. Q., Gonzalez, A. A. C., Menezes, M., Nunes, J. M. C., Pereira, S., & Nascimento, I. A. (2012). Coleção de microalgas de ambientes dulciaquícolas naturais da Bahia, Brasil, como potencial fonte para a produção de biocombustíveis: uma abordagem taxonômica. Acta Botânica Brasílica, 26, 691–696. Scholar
  12. Michałowicz, J. (2014). Bisphenol A-sources, toxicity and biotransformation. Environmental Toxicology and Pharmacology, 37, 738–758. Scholar
  13. Pereira, S. A., Araújo, V. Q., Rebouças, M. V., Vieira, F. S. V., de Almeida, M. V. A., Chinalia, F. A., & Nascimento, I. A. (2012). Toxicity of biodiesel, diesel and biodiesel/diesel blends: Comparative sub-lethal effects of water-soluble fractions to microalgae species. Bulletin of Environmental Contamination and Toxicology, 88, 234–238. Scholar
  14. Richmond, A. (2000). Handbook of microalgal culture: Biotechnology and applied phycology. Oxford: Blackwell. Scholar
  15. Sheng, Z., Wang, C., Ren, F., Liu, Y., & Zhu, B. (2019). Molecular mechanism of endocrine-disruptive effects induced by Bisphenol A: The role of transmembrane G-protein estrogen receptor 1 and integrin αvβ3. Journal of Environmental Sciences, 75, 1–13. Scholar
  16. Vega, B. O. A., Esquivel, B. C., & Voltolina, D. (2017). Determinación de peso seco y contenido orgánico e inorgánico. In B. O. A. Veja, D. Voltolina, T. Z. Savín, M. A. Montoya, & G. A. G. Anduro (Eds.), Métodos y herramientas analíticas en la evaluación de la biomassa microalgale (pp. 17–25). La paz: Centro de Investigaciones Biológicas del Noroeste (CIBNOR).Google Scholar
  17. Walne, P. R. (1966). Experiments in the large scale culture of the larvae of Ostrea edulis (L.). Fishery Investigations, 2(25), 1–53.Google Scholar
  18. WHO - World Health Organization (2002). Global assessment of the state-of-the-science of endocrine disruptors. WHO Press. Accessed 05 June 2019.
  19. Yamagishi, T., Yamaguchi, H., Suzuki, S., Horie, Y., & Tatarazako, N. (2017). Cell reproductive patterns in the green alga Pseudokirchneriella subcapitata (=Selenastrum capricornutum) and their variations under exposure to the typical toxicants potassium dichromate and 3,5-DCP. PLoS One. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Valéria Gomes Oliveira Falcão
    • 1
  • Diego de Carvalho Carneiro
    • 1
  • Solange Andrade Pereira
    • 1
  • Magnus Régios Dias da Silva
    • 2
  • Antônio Alfa Candé
    • 1
  • Suzana Telles da Cunha Lima
    • 1
    Email author
  1. 1.Instituto de BiologiaUniversidade Federal da BahiaSalvadorBrazil
  2. 2.Universidade Federal de São PauloSão PauloBrazil

Personalised recommendations