Advertisement

Assessment of the Cu(II) and Pb(II) removal efficiency of aqueous solutions by the dry biomass Aguapé: kinetics of adsorption

  • Franciele de FreitasEmail author
  • Leandro Dênis Battirola
  • Rafael Arruda
  • Ricardo Lopes Tortorela de Andrade
Article
  • 44 Downloads

Abstract

Plant-based materials are promising adsorbents for treating liquid effluents. This study describes the kinetic and equilibrium parameters that best represent the copper(II) and lead(II) removal process by Eichhornia crassipes (Aguapé) dry biomass from aqueous solution, using a batch adsorption system. The plants were washed, dried, and reduced to small particles. The adsorption kinetics were assessed by varying the metal concentrations in 5, 10, and 20 mg L–1 and a control treatment (without metals) with a mixture contact time of between 5 and 720 min. Equilibrium data were fitted to the Langmuir and Freundlich models. Kinetic assay revealed fast adsorption: kinetic equilibrium was attained within 2 h with a removal efficiency of ~ 60%. The results demonstrated a fast recovery cycle of metals using the biosorbent. The biomass of E. crassipes is low cost with potential for use as a biosorbent to remove metals from solutions.

Keywords

Biomaterials Biosorption Macrophytes Metals Models Treatment of solutions 

Notes

Funding information

This work was financially supported by the Research Support Foundation of the State of Mato Grosso (FAPEMAT) project number 227320/2015; by the Post-Graduate Program in Environmental Sciences, PPGCAM/UFMT-Sinop; by the Coordination for the Improvement of Higher Education Personnel (CAPES); by the Integrated Laboratory of Chemical Research, LIPEQ/UFMT-Sinop; and by the Funding of Innovation and Research (FINEP).

References

  1. Abbas, S. H., Ismail, I. M., Mostafa, T. M., & Sulaymon, A. H. (2014). Biosorption of heavy metals: a review. Journal of Chemical Science and Technology, 3(4), 74–102.Google Scholar
  2. Alfarra, R. S., Ali, N. E., & Yusoff, M. M. (2014). Removal of heavy metals by natural adsorbent: review. International Journal of Biosciences, 4(7), 130–139.Google Scholar
  3. Ali, R. M., Hamad, H. A., Hussein, M. M., & Malash, G. F. (2016). Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetcs, isotherm, thermodynamic, mechanism and economic analysis. Ecological Engineering, 91, 317–332.CrossRefGoogle Scholar
  4. Assunção, A. W. A., Gatti Jr., P., Almeida, R. V., Gasparotto, Y., & do Amaral, L. A. (2017). Use of aquatic plants of three different ecological types for Escherichia coli removal from pacu breeding effluents. Engenharia Sanitária Ambiental, 22(4), 657–663.CrossRefGoogle Scholar
  5. Aurangzeb, N., Nisa, S., Bibi, Y., Javed, F., & Hussain, F. (2014). Phytoremediation potential of aquatic herbs from steel foundry effluent. Brazilian Journal of Chemical Engineering, 31, 881–886.CrossRefGoogle Scholar
  6. Barać, N., Škrivanj, S., Mutić, J., Manojlović, D., Bukumirić, Z., Živojinović, D., et al. (2016). Heavy metals fractionation in agricultural soils of Pb/Zn mining region and their transfer to selected vegetables. Water, Air, & Soil Pollution, 227, 1–13.CrossRefGoogle Scholar
  7. Barbosa, C. S., Santana, S. A. A., Bezerra, C. W. B., & Silva, H. A. S. (2014). Removal of phenolic compounds from aqueous solutions using activated carbon prepared from water hyacinth (Eichhornia crassipes): kinetic and thermodynamic equilibrium studies. Química Nova, 37(3), 447–453.Google Scholar
  8. Boniolo, M. R., Yamaura, M., & Monteiro, R. A. (2010). Residual biomass for removal of uranyl ions. Química Nova, 33(3), 547–551.CrossRefGoogle Scholar
  9. Borba, C. E., Módenes, N. A., Espinoza-Quiñones, F. R., Borba, F. H., Bassi, A. F., & Ribeiro, C. (2012). Estudo da cinética e do equilíbrio de adsorção dos corantes azul turquesa QG e amarelo reativo 3R em carvão ativado. Engevista, 14(2), 135–142.Google Scholar
  10. Bulgariu, D., & Bulgariu, L. (2013). Sorption of Pb (II) onto a mixture of algae waste biomass and anion exchanger resin in a packed-bed column. Bioresource Technology, 129, 374–380.CrossRefGoogle Scholar
  11. Calfa, B. A., & Torem, M. L. (2007). Bioreagents—their use in the removal of heavy metals from liquid streams by biosorption/bioflotation. REM: Revista Escola de Minas, 60(3), 537–542.Google Scholar
  12. Casagrande, G. C. R., dos Reis, C., Arruda, R., Andrade, R. L. T., & Battirola, L. D. (2018). Bioaccumulation and biosorption of mercury by Salvinia biloba Raddi (Salviniaceae). Water, Air, & Soil Pollution, 229, 166.CrossRefGoogle Scholar
  13. Chen, K. F., Yeh, T. Y., & Lin, C. F. (2012). Phytoextraction of Cu, Zn, and Pb enhanced by chelators with vetiver (Vetiveria zizanioides): hydroponic and pot experiments. ISRN Ecology, 1, 1–12.CrossRefGoogle Scholar
  14. Chojnacka, K. (2010). Biosorption and bioaccumulation—the prospects for practical applications. Environment International, 36, 299–307.CrossRefGoogle Scholar
  15. Ciszewski, D., & Grygar, T. M. A. (2016). Review of flood-related storage and remobilization of heavy metal pollutants in river systems. Water, Air, & Soil Pollution, 227(7), 227–239.CrossRefGoogle Scholar
  16. Coelho, G. F., Gonçalves Jr., A. C., de Sousa, R. F. B., Schwantes, D., Miola, A. J., & Domingues, C. V. R. (2014). Use of adsorption techniques utilizing agroindustrial waste in the removal of contaminants in waters. Journal of Agronomic Sciences, 3, 291–317.Google Scholar
  17. CONAMA, Resolution. (2011). Provides for effluent release conditions and standards, complements and amends National Environmental Council Resolution N°. 357 of March 17, 2005. Available in: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646. Accessed 15/11/2018.
  18. Damasceno, O. I. C., Reis, C., Reis, E. L., Bellato, C. R., & de Oliveira, A. F. (2016). Modelling of lead migration from electronic waste to mixtures of kaolinite, iron oxides and organic matter. Journal of the Brazilian Chemical Society, 27(5), 877–883.Google Scholar
  19. Eid, E. M., Shaltout, K. H., Moghanm, F. S., Youssef, M. S. G., El-Mohsnawy, E., & Haroun, S. A. (2019). Bioaccumulation and translocation of nine heavy metals by Eichhornia crassipes in Nile Delta, Egypt: perspectives for phytoremediation. International Journal of Phytoremediation.  https://doi.org/10.1080/15226514.2019.1566885.CrossRefGoogle Scholar
  20. Esteves, F. A. (1998). Fundamentos de Limnologia (2ª ed.). Rio de Janeiro: Interciência/FINEP, Rio de Janeiro.Google Scholar
  21. Fagundes-Klen, M. R., Ferri, P., Martins, T. D., Tavares, C. R. G., & Silva, E. A. (2007). Equilibrium study of the binary mixture of cádmium-zinc ions biosorption by the Sargassum filipendula species using adsorption isotherms models and neural network. Biochemical Engineering Journal, 34, 136–146.CrossRefGoogle Scholar
  22. Freitas, F., Lunardi, S., Souza, L. B., Von Der Osten, J. C., Arruda, R., Andrade, R. L. T., & Battirola, L. D. (2018a). Accumulation of copper by the aquatic macrophyte Salvinia biloba Raddi (Salviniaceae). Brazilian Journal of Biology, 78(1), 133–139.CrossRefGoogle Scholar
  23. Freitas, F., Battirola, L. D., & Andrade, R. L. T. (2018b). Adsorption of Cu2+ and Pb2+ ions by Pontederia rotundifolia (L.f.) (Pontederiaceae) and Salvinia biloba Raddi (Salviniaceae) biomass. Water, Air, & Soil Pollution, 229, 2–12.CrossRefGoogle Scholar
  24. Freundlich, H. M. F. (1906). Uber die adsorption in losungen. Zeitschrift für Chemie Physikalische, 57(A), 385–470.Google Scholar
  25. Gentelini, A. L., Gomes, S. D., Feiden, A., Zenatti, D., Sampaio, S. C., & Coldebella, A. (2008). Biomass production of the aquatic macrophytes Eichhornia crassipes (water hyacinth) and Egeria densa (egeria) in organic fish farm effluent treatment system. Semina: Ciências Agrárias, 29(2), 441–448.Google Scholar
  26. Gonçalves Jr., A. C., Selzlein, C., & Nacke, H. (2009). Use of water hyacinth (Eichornia crassipes) dry biomass for removing heavy metals from contaminated solutions. Acta Scientiarum Technology, 31(1), 103–108.Google Scholar
  27. Han, S., Naito, W., & Masunaga, S. (2016). Impact of bioavailability incorporation on ecological risk assessment of nickel, copper, and zinc in surface waters. Water, Air, & Soil Pollution, 227(12), 480.CrossRefGoogle Scholar
  28. Holanda, C. A. (2010). Aguapé (Eichornia crassipes) como bioadsorvente do corante turquesa remazol. Thesis. São Luiz: Federal University of Maranhão.Google Scholar
  29. Hu, J., Zheng, A., Pei, D., & Shi, G. (2010). Bioaccumulation and chemical forms of cadmium, copper and lead in aquatic plants. Brazilian Archives of Biology and Technology, 53(1), 235–240.CrossRefGoogle Scholar
  30. Langmuir, I. (1916). The dissociation of hydrogen into atoms. III. The mechanism of the reaction. Journal of the American Chemical Society, 38(6), 1145–1156.CrossRefGoogle Scholar
  31. Lima, A. C. A., Vidal, C. B., Bezerra, C. W. B., Melo, D. Q., Raulino, G. S. C., do Nascimento, R. F., & Sousa Neto, V. O. (2014). Termodinâmica de Adsorção. In R. F. Nascimento, A. C. A. Lima, C. B. Vidal, D. Q. Melo, & G. S. C. Raulino (Eds.), Adsorção: Aspectos teóricos e Aplicações Ambientais (pp. 73–90). Fortaleza: Imprensa Universitária.Google Scholar
  32. Lima, D. P., Santos, C., Silva, R. S., Yoshioka, E. T. O., & Bezerra, R. M. (2015). Contaminação por metais pesados em peixes e água da bacia do rio Cassiporé, Estado do Amapá, Brasil. Acta Amazonica, 45(4), 405–414.CrossRefGoogle Scholar
  33. Lunardi, S., Freitas, F., Souza, L. B., Von Der Osten, J. C., Arruda, R., Battirola, L. D., & Andrade, R. L. T. (2017). Effect of concentration and exposure time on copper accumulation in Eichhornia crassipes (Mart.) Solms. (Pontederiaceae). Scientific Electronic Archives, 10(6), 56–63.Google Scholar
  34. Medeiros, J. C. C., Coelho, F. F., & Teixeira, E. (2016). Biomass allocation and nutrients balance related to the concentration of nitrogen and phosphorus in Salvinia auriculata (Salviniaceae). Brazilian Journal of Biology, 76(2), 461–468.CrossRefGoogle Scholar
  35. Melo, D. Q., de Lima, A. C. A., de Barros, A. L., Vidal, C. B., Raulino, G. S. C., & Nascimento, R. F. (2014). Equilíbrio de Adsorção. In R. F. Nascimento, A. C. A. Lima, C. B. Vidal, D. Q. Melo, & G. S. C. Raulino (Eds.), Adsorção: Aspectos teóricos e Aplicações Ambientais (pp. 23–50). Fortaleza: Imprensa Universitária.Google Scholar
  36. Mishra, S. P. (2014). Adsorption-desorption of heavy metal ions. Current Science, 107(4), 601–612.Google Scholar
  37. Mishra, V. K., & Tripathi, B. D. (2008). Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource Technology, 99, 7091–7097.CrossRefGoogle Scholar
  38. Módenes, N. A., Espinoza-Quiñones, F. R., Lavarda, F. L., Colombo, A., Borba, C. E., Leichtweis, W. A., & Mora, N. D. (2013). Removal of heavy metals Cd (II), Cu (II) and Zn (II) biosorption process by using the macrophyte Eicchornia crassipes. REM: Revista Escola de Minas, 66(3), 355–362.Google Scholar
  39. Nascimento, H. C. E., de Andrade, I. M., Silva, M. F. S., & Matias, L. Q. (2013). Pontederiaceae in the coastal region of Piauí, Brazil. Rodriguésia, 64(3), 625–634.CrossRefGoogle Scholar
  40. Nascimento, R. F., Lima, A. C. A., Vidal, C. B., Melo, D. Q., & Raulino, G. S. C. (2014). Adsorção: Aspectos teóricos e aplicações ambientais. Fortaleza: Imprensa Universitária.Google Scholar
  41. Ndimele, P. E., Jenyo-Oni, A., Chukwuka, K. S., Ndimele, C. C., & Ayodele, I. A. (2015). Does fertilizer (N15P15K15) amendment enhance phytoremediation of petroleum-polluted aquatic ecosystem in the presence of water hyacinth (Eichhornia crassipes [Mart.] Solms)? Environmental Technology, 36, 2502–2514.CrossRefGoogle Scholar
  42. Oliveira, J. A., Cambraia, J., Cano, M., & Jordão, C. P. (2001). Absorção e acúmulo de cádmio e seus efeitos sobre o crescimento relativo de plantas de Salvinia sp. e aguapé. Brazilian Journal of Plant Physiology, 13, 329–341.Google Scholar
  43. Pino, G. H., & Torem, M. L. (2011). Fundamental aspects of biosorption of non-ferrous metals. Tecnologia em Metalurgia, Materiais e Mineração, 8(1), 57–63.CrossRefGoogle Scholar
  44. Pitol-Filho, L. (2011). Sustainable applications of biomass: new perspectives. Revista da Unifebe, 9, 100–109.Google Scholar
  45. Pompêo, M. (2008). Monitoramento e manejo de macrófitas aquáticas. Oecologia brasiliensis, 12(3), 406–424.Google Scholar
  46. Rajczykowski, K., Sałasińska, O., & Loska, K. (2018). Zinc removal from the aqueous solutions by the chemically modified biosorbents. Water, Air, & Soil Pollution, 229(1), –6.Google Scholar
  47. Rangel-Peraza, J. G., Mendivil-García, K., Cedillo-Herrera, C. I. G., Rochín-Medina, J. J., Rodríguez-Mata, A. E., & Bustos-Terrones, Y. A. (2017). Optimization of organic matter degradation kinetics and nutrient removal on artificial wetlands using Eichhornia crassipes and Typha domingensis. Environmental Technology, 40, 633–641.CrossRefGoogle Scholar
  48. Regalbuto, J. R., & Robles, J. (2004). The engineering of Pt/carbon catalyst preparation. Chicago: University of Illinois.Google Scholar
  49. Rodrigues, A. C. D., Santos, A. M., Santos, F. S., Pereira, A. C. C., & Sobrinho, N. M. B. A. (2016). Response mechanisms of plants to heavy metal pollution: possibility of using macrophytes for remediation of contaminated aquatic environments. Revista Virtual Química, 8, 262–276.CrossRefGoogle Scholar
  50. Rubim, M. A. L., Sampaio, P. R. I., & Parolin, P. (2015). Eficiencia de Eichhornia crassipes como biofiltro en el tratamiento de aguas residuales de la piscicultura en el Amazonas. Journal of Experimental Botany, 84, 244–251.Google Scholar
  51. Shinzato, M. C., Montanheiro, T. J., Janasi, V. A., Andrade, S., & Yamamoto, J. K. (2009). Removal of Pb2+ and Cr3+ from aqueous solution by natural zeolites associated with eruptive rocks from the Serra Geral formation, Paraná sedimentary basin. Química Nova, 32(8), 1989–1994.CrossRefGoogle Scholar
  52. Silva, J. L. B. C., Pequeno, O. T. B. L., Rocha, L. K. Y. S., Araújo, E. C. O. A., Marciel, T. A. R., & Barros, A. J. M. B. (2014). Biosorption heavy metals: a review. Revista Saúde e Ciência, 3(3), 137–149.Google Scholar
  53. Tasar, S., Kaya, F., & Ozer, A. (2014). Biosorption of lead (II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies. Journal of Environmental Chemical Engineering, 2, 1018–1026.CrossRefGoogle Scholar
  54. Tirkey, A., Shrivastava, P., & Saxena, A. (2012). Bioaccumulation of heavy metals in different components of two lakes ecosystem. Current World Environment: An International Research Journal of Environmental Sciences, 7(2), 293–297.CrossRefGoogle Scholar
  55. Vidal, C. B., de Lima, A. C. A., Raulino, G. S. C., Melo, D. Q., & do Nascimento, R. F. (2014). Princípios básicos. In R. F. Nascimento, A. C. A. Lima, C. B. Vidal, D. Q. Melo, & G. S. C. Raulino (Eds.), Adsorção: Aspectos teóricos e Aplicações Ambientais (pp. 51–71). Fortaleza: Imprensa Universitária.Google Scholar
  56. Volesky, B. (2007). Biosorption and me. Water Research, 41, 4017–4029.CrossRefGoogle Scholar
  57. Worch, E. (2012). Adsorption technology in water treatment: fundamentals, processes, and modeling. Germany: Dresden University of Technology Institute of Water Chemistry.CrossRefGoogle Scholar
  58. Zhou, H. Y., & Wong, M. H. (2000). Mercury accumulation in freshwater fish with emphasis on the dietary influence. Water Research, 34(17), 4234–4242.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Franciele de Freitas
    • 1
    Email author
  • Leandro Dênis Battirola
    • 1
  • Rafael Arruda
    • 1
  • Ricardo Lopes Tortorela de Andrade
    • 1
  1. 1.Postgraduate Program in Environmental Sciences, Institute of Natural, Human and Social SciencesFederal University of Mato Grosso (UFMT)SinopBrazil

Personalised recommendations