Advertisement

An integrated measurement of six response performance indicators for lead ion-selective electrodes and application

  • Lingzhi Sun
  • Chengjun Sun
  • Xianxiang SunEmail author
Article

Abstract

A heavy metal ion-selective electrode (ISE) with highly multiple response performances, rather than a high single response performance, is needed urgently for in situ, real-time environmental monitoring. In this study, we present an integrated measurement of six response performance variables such as the response slope, selectivity, dynamical range, detection limit, response time, and lifetime. They are selected and used as the indicators of the quality assessment for Pb2+-ISEs. The measurement, named as electrode comprehensive quality index (IECQ), is a single number for a given ISE. The comprehensive qualities of 114 Pb2+-ISEs reported in the literature were evaluated through the index method. Twenty-one Pb2+-ISEs-based polymer membrane with top 3 IECQ values for seven different properties have been recommended by evaluating and screening of the electrodes. Five Pb2+-ISEs-based polymer membrane with the best single response performance were also provided. The recommended Pb2+-ISEs, along with the corresponding Pb2+-ISEs with the miniaturized configurations, will provide helpful guideline for the application of Pb2+-ISE with highly multiple response performances in real-time environmental monitoring.

Keywords

Lead ion-selective electrode Comprehensive quality index Overall quality evaluation Screening Environmental monitoring 

Notes

Funding information

This work was partially supported by the Summit of the Six Top Talents Program in Jiangsu Province (2012-SWYY-030 and 2017-SWYY-081) and the foundation of Jiangsu Province educational committee (16KJB180031) (L.Sun).

Supplementary material

10661_2019_7908_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 18 kb)
10661_2019_7908_MOESM2_ESM.docx (46 kb)
ESM 2 (DOCX 46 kb)
10661_2019_7908_MOESM3_ESM.doc (31 kb)
ESM 3 (DOC 31 kb)
10661_2019_7908_MOESM4_ESM.doc (30 kb)
ESM 4 (DOC 31 kb)
10661_2019_7908_MOESM5_ESM.docx (34 kb)
ESM 5 (DOCX 35 kb)

References

  1. Abu-Shawish, H. M. (2009). A mercury(II) selective sensor based on N,N-bis(salicylaldehyde)-phenylenediamine as neutral carrier for potentiometric analysis in water samples. Journal of Hazardous Materials, 167, 602–608.CrossRefGoogle Scholar
  2. Bakker, E., & Pretsch, E. (2001). Potentiometry at trace levels. Trends in Analytical Chemistry, 20, 11–19.CrossRefGoogle Scholar
  3. Barzegar, M., Mousavi, M. F., Khajehsharifi, H., Shamsipur, M., & Sharghi, H. (2005). Application of some recently synthesized 9, 10-anthraquinone derivatives as new class of ionophores responsive to lead (II) ion. IEEE Sensors Journal, 5, 392–397.CrossRefGoogle Scholar
  4. Braungardt, C. B., Achterberg, E. P., Axelsson, B., Buffle, J., Graziottin, F., Howell, K. A., Illuminati, S., Scarponi, G., Tappin, A. D., Tercier-Waeber, M.-L., & Turner, D. (2009). Analysis of dissolved metal fractions in coastal waters: an inter-comparison of five voltammetric in situ profiling (VIP) systems. Marine Chemistry, 114, 47–55.CrossRefGoogle Scholar
  5. Buffle, J., Altmann, R. S., Filella, M., & Tessier, A. (1990). Complexation by natural heterogeneous compounds: Site occupation distribution functions, a normalized description of metal complexation. Geochimica et Cosmochimica Acta, 54, 1535–1553.CrossRefGoogle Scholar
  6. Buhlmann, P., & Umezawa, Y. (2000). Lifetime of ion-selective electrodes based on charged ionophores. Analytical Chemistry, 72, 1843–1845.CrossRefGoogle Scholar
  7. Ceresa, A., Bakker, E., Hattendorf, B., Gunther, D., & Pretsch, E. (2001). Potentiometric polymeric membrane electrodes for measurement of environmental samples at trace levels: new requirements for selectivities and measuring protocols, and comparison with ICPMS. Analytical Chemistry, 73, 343–351.CrossRefGoogle Scholar
  8. Cude, C. G. (2001). Oregon water quality index a tool for evaluating water quality management effectiveness. Journal of the American Water Resources Association, 37, 125–137.CrossRefGoogle Scholar
  9. De Marco, R., Clarke, G., & Pejcic, B. (2007). Ion-selective electrode potentiometry in environmental analysis. Electroanalysis, 19, 1987–2001.CrossRefGoogle Scholar
  10. Dobbie, M. J., & Dail, D. (2013). Robustness and sensitivity of weighting and aggregation in constructing composite indices. Ecological Indicators, 29, 270–277.CrossRefGoogle Scholar
  11. Ellison, S. L. R., & Williams, A. (2012). EURACHEM/CITAC Guide:Quantifying uncertainty in analytical measurement (3rd ed.pp. 26–27) QUAM:2012.P1.(ISBN 978–0–948926-30-3).Google Scholar
  12. Gorai, A. K., Kanchan, Upadhyay, A., Tuluri, F., Goyal, P., & Tchounwou, P. B. (2015). An innovative approach for determination of air quality health index. Science of the Total Environment, 533, 495–505.CrossRefGoogle Scholar
  13. Guilbault, G. G., Durst, R. A., Frant, M. S., et al. (1976). Recommendations for nomenclature of ion-selective electrodes. Pure and Applied Chemistry, 48, 127–132.CrossRefGoogle Scholar
  14. Gumpu, M. B., Sethuraman, S., Krishnan, U. M., & Rayappan, J. B. B. (2015). A review on detection of heavy metal ions in water – an electrochemical approach. Sensors and Actuators B: Chemical, 213, 515–533.CrossRefGoogle Scholar
  15. Gupta, K. C., & D’Arc, M. J. (2001). Lead (II) ion selective electrodes based on diphenylmethyl- N-phenylhydroxamic acid ionophore in cyanocopolymer matrix. IEEE Sensors Journal, 1, 275–282.CrossRefGoogle Scholar
  16. Gupta, V. K., Ganjali, M. R., Norouzi, P., Khani, H., Nayak, A., & Agarwal, S. (2011). Electrochemical analysis of some toxic metals by ion-selective electrodes. Critical Reviews in Analytical Chemistry, 41, 282–313.CrossRefGoogle Scholar
  17. Guzinski, M., Lisak, G., Kupis, J., Jasinski, A., & Bochenska, M. (2013). Lead(II)-selective ionophores for ion-selective electrodes: a review. AnalyticaChimica Acta, 791, 1–12.CrossRefGoogle Scholar
  18. Hanrahan, G., Pati, D. G., & Wang, J. (2004). Electrochemical sensors for environmental monitoring: design, development and applications. Journal of Environmental Monitoring, 6, 657–664.CrossRefGoogle Scholar
  19. Inamuddin, & Alam, M. M. (2008). Studies on the preparation and analytical applications of various metal ion-selective membrane electrodes based on polymeric, inorganic and composite materials—a review. Journal Macromolecular Science, Part A, 45, 1084–1101.CrossRefGoogle Scholar
  20. Inamuddin, Rangreez, T. A., Naushad, M., & Al-Ahmad, A. (2015). Synthesis and characterisation of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) Zr(IV) monothiophosphate composite cation exchanger: analytical application as lead ion selective membrane electrode. International Journal of Environmental Analytical Chemistry, 95, 312–323Google Scholar
  21. Karami, H., Mousavi, M. F., & Shamsipur, M. (2003). Flow injection potentiometry by a new coated graphite ion-selective electrode for the determination of Pb2+. Talanta, 60, 775–786.CrossRefGoogle Scholar
  22. Khan, A. A., & Baig, U. (2012). Electrically conductive membrane of polyaniline–titanium(IV) phosphate cation exchange nanocomposite: applicable for detection of Pb(II) using its ion-selective electrode. Journal of Industrial and Engineering Chemistry, 18, 1937–1944.CrossRefGoogle Scholar
  23. Khan, A. A., Khan, M. Q., & Shaheen, S. (2016). Synthesis, characterization, and electroanalytical studies of Pb2+-selective polypyrrole-Zr(IV) phosphate ion exchange membrane. Journal of Solid State Electrochemistry, 20, 2079–2091.CrossRefGoogle Scholar
  24. Lindner, E., Toth, K., & Pungor, E. (1984). Lead-selective neutral carrier based liquid membrane electrode. Analytical Chemistry, 56, 1127–1131.CrossRefGoogle Scholar
  25. Mary-Lou, T.-W., & Martial, T. (2008). Remote in situ voltammetric techniques to characterize the biogeochemical cycling of trace metals in aquatic systems. Journal of Environmental Monitoring, 10, 30–54.CrossRefGoogle Scholar
  26. Namour, P., Lepot, M., & Jaffrezic-Renault, N. (2010). Recent trends in monitoring of European water framework directive priority substances using micro-sensors: a 2007–2009 review. Sensors, 10, 7947–7978.CrossRefGoogle Scholar
  27. Oesch, U., & Simmon, W. (1980). Lifetime of neutral carrier based ion-selective liquid-membrane electrodes. Analytical Chemistry, 52, 692–700.CrossRefGoogle Scholar
  28. Parra, E. J., Blondeau, P., Crespo, G. A., & Xavier Rius, F. (2011). An effective nanostructured assembly for ion-selective electrodes. An ionophore covalently linked to carbon nanotubes for Pb2+ determination. Chemical Communications, 47, 2438–2440.CrossRefGoogle Scholar
  29. Sanchez, J., & del Velle, M. (2001). A new potentiometric photocurable membrane selective to anionic surfactants. Electroanalysis, 13, 471–476.CrossRefGoogle Scholar
  30. Sardohan-Koseoglu, T., Kir, E., & Dede, B. (2015). Preparation and analytical application of the novel Hg(II)-selective membrane electrodes based on oxime compounds. Journal of Colloid and Interface Science, 444, 17–23.CrossRefGoogle Scholar
  31. Singh, A., Sharma, R. K., Agrawal, M., & Marsha, F. M. (2010). Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food and Chemical Toxicology, 48, 611–619.CrossRefGoogle Scholar
  32. Slaveykova, V. I., Wilkinson, K. J., Ceresa, A., & Pretsch, E. (2003). Role of fulvic acid on lead bioaccumulation by Chlorella kesslerii. Environmental Science & Technology, 37, 1114–1121.CrossRefGoogle Scholar
  33. Sun, X. (2003). A new evaluation on comprehensive quality of ion-selective electrode and its application in development of doxycycline-selective PVC membrane electrode. Journal of Instrumental Analysis, 22, 1–4 (in Chinese).Google Scholar
  34. Sun, X. X., Xu, M. H., Sun, C. J., & Aboul-Enein, H. Y. (2007). Weighting factor in calculation of comprehensive quality index and optimization of PVC membrane composition for ion selective electrode. Instrumentation Science and Technology, 35, 469–479.CrossRefGoogle Scholar
  35. Sun, L., Sun, C., & Sun, X. (2016). Screening highly selective ionophores for heavy metal ion-selective electrodes and potentiometric sensors. Electrochimica Acta, 220, 690–698.CrossRefGoogle Scholar
  36. Sunda, W., & Guillard, R. R. L. (1976). The relationship between cupric ion activity and the toxicity of copper to phytoplankton. Journal of Marine Research, 34, 511–529.Google Scholar
  37. Tang, X., Wang, P. Y., & Buchter, G. (2018). Ion-selective electrodes for detection of lead (II) in drinking water: a mini-review. Environments, 5, 95.CrossRefGoogle Scholar
  38. Tutulea-Anastasiu, M. D., Wilson, D., del Valle, M., Schreiner, C. M., & Cretescu, I. (2013). A solid-contact ion selective electrode for copper(II) using a succinimide derivative as ionophore. Sensors, 13, 4367–4377.CrossRefGoogle Scholar
  39. Tyagi, S., Agarwal, H., & Ikram, S. (2009). Application of calixarene ionophores in PVC-based ion selective electrodes for heavy metal detection. The IUP Journal of Chemistry, II, 68.Google Scholar
  40. Umezawa, Y. K., Umezawa, K., & Sato, H. (1995). Selectivity coefficients for ion-selective electrodes: recommendation methods for reporting KA, B POT values. Pure and Applied Chemistry, 67, 507–518.CrossRefGoogle Scholar
  41. Xie, L., Qin, Y., & Chen, H.-Y. (2013). Preparation of solid contact potentiometric sensors with self-plasticizing triblock polymer and ionic liquid-polymer composites. Sensors and Actuators B, 186, 321–326.CrossRefGoogle Scholar
  42. Yu, P., Liu, S., Zhang, L., Li, Q., & Zhou, D. (2018). Selecting the minimum data set and quantitative soil quality indexing of alkaline soils under different land uses in northeastern China. Science of the Total Environment, 616, 564–571.CrossRefGoogle Scholar
  43. Zachara, J. E., Toczyłowska, R., Pokrop, R., Zagórska, M., Dybko, A., & Wróblewski, W. (2004). Miniaturised all-solid-state potentiometric ion sensors based on PVC-membranes containing conducting polymers. Sensors and Actuators B, 101, 207–212.CrossRefGoogle Scholar
  44. Zahran, E. M., New, A., Gavalas, V., & Bachas, L. G. (2014). Polymeric plasticizer extends the lifetime of PVC-membrane ion-selective electrodes. Analyst, 139, 757–763.CrossRefGoogle Scholar
  45. Zareh, M. M., Ghoneim, A. K., & Abd El-Aziz, M. H. (2001). Effect of presence of 18-crown-6 on the response of 1-pyrrolidine dicarbodithioate-based lead selective electrode. Talanta, 54, 1049–1057.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of PharmacyYancheng Teachers UniversityYanchengChina
  2. 2.Electrical and Computer Engineering DepartmentNew Jersey Institute of TechnologyNewarkUSA
  3. 3.School of Petrochemical EngineeringChangzhou UniversityChangzhouChina

Personalised recommendations