Advertisement

Assessment of soil erosion in social forest-dominated watersheds in Lampung, Indonesia

  • Rahmah Dewi Yustika
  • Hiroaki SomuraEmail author
  • Slamet Budi Yuwono
  • Bustanul Arifin
  • Hanung Ismono
  • Tsugiyuki Masunaga
Article
  • 5 Downloads

Abstract

Social forestry policies grant local communities the right to access protected forest areas contingent upon certain governmental criteria. However, the adoption of social forestry is known to alter land-cover patterns and promote soil erosion. This study assessed the water quality of Sekampung Hulu and Sangharus Rivers in Lampung, Indonesia, based on their total suspended solid (TSS) concentrations. Subsequently, the extent of soil erosion in the two watersheds was determined, and best management practices (BMPs) were recommended for the study area. Water sampling was conducted in 2016 to estimate TSS levels in the two watersheds. Additionally, the Universal Soil Loss Equation (USLE) was integrated with an ArcGIS model to evaluate soil erosion in the watersheds. The results indicated that TSS concentrations in the Sekampung Hulu and Sangharus Rivers ranged from 36–813 mg L-1 and 16–146 mg L−1, respectively. Further, the average soil erosion rates in the Sekampung Hulu and Sangharus watersheds were 12.5 Mg ha−1 year−1 and 5.6 Mg ha−1 year−1, respectively. The results indicated that young coffee trees increased soil erosion rates, especially in areas characterized by vulnerable soil. The USLE results concurred with the TSS analysis and indicated higher erosion rates for the Sekampung Hulu watershed than the Sangharus watershed. The application of BMPs, including conversion to agroforestry coffee, cover crops, and contour systems, was effective in reducing soil erosion in both the Sekampung Hulu and Sangharus watersheds.

Keywords

Erosion Sangharus watershed Sekampung Hulu watershed Social forestry Total suspended solids 

Notes

Acknowledgments

We thank the farmers in the study area for their valuable support.

Funding information

The SMARTD (Sustainable Management of Agricultural Research and Technology Dissemination), Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, provided funding for this study. This study was partially supported by the Grant-in-Aid for Scientific Research, KAKENHI (B): 17H01915.

References

  1. Afandi, Manik, T. K., Rosadi, B., Utomo, M., Senge, M., Adachi, T., & Oki, Y. (2002). Soil erosion under coffee trees with different weed managements in humid tropical hilly area of Lampung, South Sumatra, Indonesia. Journal of the Japan Society Soil Physical, 91, 3–14. Retrieved from https://js-soilphysics.com/downloads/pdf/092003.pdf. Accessed 15 Dec 2018.
  2. Aflizar, Saidi, A., Husnain, Ismawardi, Istijono, B., Harmailis, …, Masunaga, T. (2010). A land use planning recommendation for the Sumani watershed, West Sumatera, Indonesia. Tropics, 19(1), 43–51.  https://doi.org/10.3759/tropics.19.43 CrossRefGoogle Scholar
  3. Ahmad, S., & Hagos, H. (2016). Estimation of soil erosion using USLE and GIS in Awassa Catchment, Rift valley, Central Ethiophia. Geoderma Regional, 7, 159–166.  https://doi.org/10.1016/j.geodrs.2016.03.005.CrossRefGoogle Scholar
  4. Alegre, J. C., & Rat, M. R. (1996). Soil and water conservation by contour hedging in the humid tropics of Peru. Agriculture, Ecosystems and Environment, 57, 17–25.  https://doi.org/10.1016/0167-8809(95)01012-2.CrossRefGoogle Scholar
  5. American Public Health Association. (1999). Standard methods for the examination of water & wastewater (20th ed.). Washington: American Public Health Association, American Water Works Association, Water Environment Federation.Google Scholar
  6. Ansonet, J. (2019). Personal interview on 6th March 2019Google Scholar
  7. Bols, P. L. (1978). The iso-erodent map of Java and Madura. Bogor: Soil Research Institute.Google Scholar
  8. Canton, Y., Domingo, F., Sole-Benet, A., & Puigdefabregas, J. (2001). Hydrological and erosion response of a badlands system in semiarid SE Spain. Journal of Hydrology, 252, 65–84.  https://doi.org/10.1016/S0022-1694(01)00450-4.CrossRefGoogle Scholar
  9. Dariah, A., Agus, F., Arsyad, S., Sudarsono, & Maswar. (2003). Hubungan antara karakteristik tanah dengan tingkat erosi pada lahan usahatani berbasis kopi di Sumberjaya, Lampung Barat [Relationship between soil characteristics and rate of soil loss on coffee base-farming system at Sumberjaya, West Lampung]. Jurnal Tanah Dan Iklim, 21, 78–86.  https://doi.org/10.2017/jti.v0i21.275.CrossRefGoogle Scholar
  10. Dariah, A., Agus, F., Arsyad, S., Sudarsono, & Maswar. (2004). Erosi dan aliran permukaan pada lahan pertanian berbasis tanaman kopi di Sumberjaya, Lampung Barat. Agrivita, 26(1), 52–60 Retrieved from http://www.worldagroforestry.org/sea/Publications/files/book/BK0063-04/BK0063-04-7.pdf. Accessed 28 Mar 2017.
  11. De Beenhouwer, M., Geeraert, L., Mertens, J., Van Geel, M., Aerts, R., Vanderhaegen, K., & Honnay, O. (2016). Biodiversity and carbon storage co-benefits of coffee agroforestry across a gradient of increasing management intensity in the SW Ethiopian highlands. Agriculture, Ecosystems and Environment, 222, 193–199.  https://doi.org/10.1016/j.agee.2016.02.017.CrossRefGoogle Scholar
  12. Desmet, P., & Govers, G. (1996). A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation, 51(5), 427–433 Retrieved from http://www.jswconline.org/content/51/5/427.short. Accessed 15 Jan 2019.
  13. Devatha, C. P., Deshpande, V., & Renukaprasad, M. S. (2015). Estimation of soil loss using USLE model for Kulhan Watershed, Chattisgarh - A case study. Aquatic Procedia, 4, 1429–1436.  https://doi.org/10.1016/j.aqpro.2015.02.185.CrossRefGoogle Scholar
  14. Directorate General of Operation and Maintenance Water Resources Mesuji Sekampung [DGOMWRMS]. (2017). Precipitation data station Batutegi Dam. Lampung, Indonesia: Ministry of Public Work and Public Housing.Google Scholar
  15. Ebeid, M. M., Lal, R., Hall, G. F., & Miller, E. (1995). Erosion effects on soil properties and soybean yield of a Miamian soil in Western Ohio in a season with below normal rainfall. Soil Technology, 8, 97–108.  https://doi.org/10.1016/0933-3630(95)00010-9.CrossRefGoogle Scholar
  16. El Kateb, H., Zhang, H., Zhang, P., & Mosandl, R. (2013). Soil erosion and surface runoff on different vegetation covers and slope gradients: A field experiment in Southern Shaanxi Province, China. Catena, 105, 1–10.  https://doi.org/10.1016/j.catena.2012.12.012.CrossRefGoogle Scholar
  17. Fu, K. D., He, D. M., & Lu, X. X. (2008). Sedimentation in the Manwan reservoir in the Upper Mekong and its downstream impacts. Quaternary International, 186, 91–99.  https://doi.org/10.1016/j.quaint.2007.09.041.CrossRefGoogle Scholar
  18. Google Earth. (2017). Tanggamus district, Lampung. 5° 09’39.55” S, 104°38’15.45” E, Eye alt 1.48 km. Retrieved from www.google.com/earth. Accessed 26 Sept 2019.
  19. Gunawardhana, W. D. T. M., Jayawardhana, J. M. C. K., & Udayakumara, E. P. N. (2016). Impacts of agricultural practices on water quality in Uma Oya catchment area in Sri Lanka. Procedia Food Science, 6, 339–343.  https://doi.org/10.1016/j.profoo.2016.02.068.CrossRefGoogle Scholar
  20. Hairiah, K., Sulistyani, H., Suprayogo, D., Widianto, Purnomosidhi, P., Widodo, R. H., & van Noordwijk, M. (2006). Litter layer residence time in forest and coffee agroforestry systems in Sumberjaya, West Lampung. Forest Ecology and Management, 224, 45–57.  https://doi.org/10.1016/j.foreco.2005.12.007.CrossRefGoogle Scholar
  21. Hamer, W. I. (1980). Soil Conservation Consultant Report, INS/78/006 Technical Note No.7. Bogor: Soil Research Institute.Google Scholar
  22. Hessel, R., & Jetten, V. (2007). Suitability of transport equations in modelling soil erosion for a small Loess Plateau catchment. Engineering Geology, 91, 56–71.  https://doi.org/10.1016/j.enggeo.2006.12.013.CrossRefGoogle Scholar
  23. Huang, J. (2018). Assessment of potential changes in soil erosion using remote sensing and GIS: a case study of Dacaozi Watershed, China. Environmental Monitoring and Assessment, 190(12), 736.  https://doi.org/10.1007/s10661-018-7120-6.CrossRefGoogle Scholar
  24. Indonesian Center for Agricultural Land Resources Research and Development [ICALRD] (2016). Peta tanah semidetil skala 1:50.000 Kabupaten Tanggamus, Provinsi Lampung [Soil map scale 1:50.000 of Tanggamus Districts, Lampung Province]. Bogor, Indonesia: Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian.Google Scholar
  25. International Coffee Organization. (2019). Total production by all exporting countries. Retrieved from http://www.ico.org/trade_statistics.asp?section=Statistics. Accessed 10 Jul 2019.
  26. Iori, P., de Souza Dias, M., Ajayi, A. E., Guimarães, P. T. G., & Abreu Júnior, Á. A. (2014). Influence of field slope and coffee plantation age on the physical properties of a red-yellow Latosol. Revista Brasileira de Ciência do Solo, 38(1), 107–117.  https://doi.org/10.1590/S0100-06832014000100010.CrossRefGoogle Scholar
  27. Kibena, J., Nhapi, I., & Gumindoga, W. (2014). Assessing the relationship between water quality parameters and changes in landuse patterns in the Upper Manyame River, Zimbabwe. Physics and Chemistry of the Earth, 67–69, 153–163.  https://doi.org/10.1016/j.pce.2013.09.017.CrossRefGoogle Scholar
  28. Kubitza, C., Krishna, V. V., Urban, K., Alamsyah, Z., & Qaim, M. (2018). Land property rights, agricultural intensification, and deforestation in Indonesia. Ecological Economics, 147(February), 312–321.  https://doi.org/10.1016/j.ecolecon.2018.01.021.CrossRefGoogle Scholar
  29. Kusumandari, A., & Mitchell, B. (1997). Soil erosion and sediment yield in forest and agroforestry areas in West Java, Indonesia. Journal of Soil and Water Conservation, 52, 376–380. Retrieved from http://www.jswconline.org/content/52/5/376.full.pdf+html. Accessed 17 Jul 2018.
  30. Ladoni, M., Basir, A., Robertson, P. G., & Kravchenko, A. N. (2016). Scaling-up: Cover crops differentially influence soil carbon in agricultural fields with diverse topography. Agriculture, Ecosystems and Environment, 225, 93–103.  https://doi.org/10.1016/j.agee.2016.03.021.CrossRefGoogle Scholar
  31. Liu, Y., & Yamauchi, F. (2014). Population density, migration, and the returns to human capital and land: Insights from Indonesia. Food Policy, 48, 182–193.  https://doi.org/10.1016/j.foodpol.2014.05.003.CrossRefGoogle Scholar
  32. Liu, B. Y., Nearing, M. A., Shi, P. J., & Jia, Z. W. (2000). Slope length effects on soil loss for steep slopes. Soil Science Society of America Journal, 64(5), 1759–1763.  https://doi.org/10.2136/sssaj2000.6451759x.CrossRefGoogle Scholar
  33. Malahayati, M. (2018). The role of the forest-related sector to the Indonesian Economy: SAM Multiplier Analysis 1985-2008. Open Agriculture, 3, 171–179.  https://doi.org/10.1515/opag-2018-0018.CrossRefGoogle Scholar
  34. Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F., & Hansen, M. C. (2014). Primary forest cover loss in Indonesia over 2000–2012. Nature Climate Change, 4, 730–735.  https://doi.org/10.0414/nclimate2277.CrossRefGoogle Scholar
  35. Mehri, A., Salmanmahiny, A., Tabrizi, A. R. M., Mirkarimi, S. H., & Sadoddin, A. (2018). Investigation of likely effects of land use planning on reduction of soil erosion rate in river basins : Case study of the Gharesoo River Basin. Catena, 167(April), 116–129.  https://doi.org/10.1016/j.catena.2018.04.026.CrossRefGoogle Scholar
  36. Messiga, A. J., Sharifi, M., Hammermeister, A., Gallant, K., Fuller, K., & Tango, M. (2015). Soil quality response to cover crops and amendments in a vineyard in Nova Scotia, Canada. Scientia Horticulturae, 188, 6–14.  https://doi.org/10.1016/j.scienta.2015.02.041.CrossRefGoogle Scholar
  37. Ministry of Environment and Forestry. (2016). Peraturan Menteri Lingkungan Hidup dan Kehutanan No. P.83/MENLHK/SETJEN/KUM.1/10/2016 tentang perhutanan sosial [Environment and Forestry Ministrial Regulation No. P.83/MENLHK/SETJEN/KUM.1/10/2016 about social forestry]. Jakarta, Indonesia: Republic of Indonesia Retrieved from http://pskl.menlhk.go.id/peraturan.html. Accessed 2 Feb 2018.
  38. Mitasova, H., Hofierka, J., Zlocha, M., & Iverson, L. R. (1996). Modelling topographic potential for erosion and deposition using GIS. International Journal of Geographical Information Systems, 10(5), 629–641.  https://doi.org/10.1080/02693799608902101.CrossRefGoogle Scholar
  39. Moore, I. D., & Wilson, J. P. (1992). Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation. Journal of Soil and Water Conservation, 47(5), 423–428. Retrieved from https://www.researchgate.net/publication/279600630_Length-slope_factors_for_the_revised_universal_soil_loss_equation_simplified_method_of_estimation. Accessed 11 Nov 2018.
  40. National Land Agency. (2017). Land use map in Lampung Province. Jakarta: The Ministry of Agrarian Affairs and Spatial Planning/National Land Agency.Google Scholar
  41. Nicolau, J. M., Sole-Benet, A., Puigdefabregas, J., & Gutierrez, L. (1996). Effects of soil and vegetation on runoff along a catena in semi-arid Spain. Geomorphology, 14, 297–309.  https://doi.org/10.1016/0169-555X(95)00043-5.CrossRefGoogle Scholar
  42. Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., & Alewell, C. (2014). Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Science of the Total Environment, 479–480(1), 189–200.  https://doi.org/10.1016/j.scitotenv.2014.02.010.CrossRefGoogle Scholar
  43. Panagos, P., Borrelli, P., & Meusburger, K. (2015). A new European slope length and steepness factor (LS-Factor) for modeling soil erosion by water. Geosciences, 25, 117–126.  https://doi.org/10.3390/geosciences5020117.CrossRefGoogle Scholar
  44. Pham, T. G., Degener, J., & Kappas, M. (2018). Integrated universal soil loss equation (USLE) and Geographical Information System (GIS) for soil erosion estimation in A Sap basin: Central Vietnam. International Soil and Water Conservation Research, 6(2), 99–110.  https://doi.org/10.1016/j.iswcr.2018.01.001.CrossRefGoogle Scholar
  45. Pilgrim, C. M., Mikhailova, E. A., Post, C. J., Hains, J. J., & Cox, S. K. (2015). Spatial and temporal analysis of lake sedimentation under reforestation. Water Science, 29(2), 93–108.  https://doi.org/10.1016/j.wsj.2015.05.001.CrossRefGoogle Scholar
  46. Pires, L. F., Araujo-Junior, C. F., Auler, A. C., Dias, N. M. P., Dias Junior, M. S., & de Alcântara, E. N. (2017). Soil physico-hydrical properties changes induced by weed control methods in coffee plantation. Agriculture, Ecosystems and Environment, 246, 261–268.  https://doi.org/10.1016/j.agee.2017.06.008.CrossRefGoogle Scholar
  47. Prawiradisastra, S. (2013). Landslide prone areas identification in Lampung Province. Jurnal Sains Dan Teknologi Indonesia, 15(1), 52–59. Retrieved from http://ejurnal.bppt.go.id/ejurnal2011/index.php/jsti/article/view/1011/934. Accessed 11 Apr 2018.
  48. Preti, F. (2013). Forest protection and protection forest: Tree root degradation over hydrological shallow landslides triggering. Ecological Engineering, 61, 633–645.  https://doi.org/10.1016/j.ecoleng.2012.11.009.CrossRefGoogle Scholar
  49. Pumarino, L., Sileshi, G. W., Gripenberg, S., Kaartinen, R., Barrios, E., Muchane, M. N., et al. (2015). Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic and Applied Ecology, 16, 573–582.  https://doi.org/10.1016/j.baae.2015.08.006.CrossRefGoogle Scholar
  50. Ran, L., Lu, X. X., Xin, Z., & Yang, X. (2013). Cumulative sediment trapping by reservoirs in large river basins: A case study of the Yellow River basin. Global and Planetary Change, 100, 308–319.  https://doi.org/10.1016/j.gloplacha.2012.11.001.CrossRefGoogle Scholar
  51. Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook No. 703. United States Department of Agriculture. Retrieved from http://www.ars.usda.gov/SP2UserFiles/Place/64080530/RUSLE/AH_703.pdf. Accessed 13 Feb 2019.
  52. Roose, E. J. (1976). Use of the universal soil loss equation to predict erosion in West Africa. Soil Erosion: Prediction and Control. Soil Conservation Society of America. Special Publication, 21, 60–74. Retrieved from http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_5/b_fdi_08-09/09135.pdf. Accessed 15 Jul 2018.
  53. Sepulveda, R. B., & Carrillo, A. A. (2015). Soil erosion and erosion thresholds in an agroforestry system of coffee (Coffea arabica) and mixed shade trees (Inga spp and Musa spp) in Northern Nicaragua. Agriculture, Ecosystems and Environment, 210, 25–35.  https://doi.org/10.1016/j.agee.2015.04.032.CrossRefGoogle Scholar
  54. Shi, Z. H., Cai, C. F., Ding, S. W., Wang, T. W., & Chow, T. L. (2004). Soil conservation planning at the small watershed level using RUSLE with GIS: a case study in the Three Gorge Area of China. Catena, 55, 33–48.  https://doi.org/10.1016/S0341-8162(03)00088-2.CrossRefGoogle Scholar
  55. Somura, H., Yuwono, S. B., Ismono, H., Arifin, B., Fitriani, F., & Kada, R. (2019). Relationship between water quality variations and land use in the Batutegi Dam Watershed, Sekampung, Indonesia. Lakes & Reservoirs, 24, 93–101.  https://doi.org/10.1111/lre.12221.CrossRefGoogle Scholar
  56. Sparovek, G., & Jong Van Lier, Q. (1997). Definition of tolerable soil erosion values. Revista Brasileira de Ciência do Solo, 21(3), 467–471.  https://doi.org/10.1590/s0100-06831997000300016.CrossRefGoogle Scholar
  57. Sparovek, G., Weill, M. M., Ranieiri, S. B. L., Schnug, E., & Silva, E. F. (1997). The life-time concept as a tool for erosion tolerance definition. Scientia Agricola, 54(spe), 130–135.  https://doi.org/10.1590/s0103-90161997000300015.CrossRefGoogle Scholar
  58. Statistics of Lampung Province. (2017a). Export Value of Forestry and Agricultural Commodity Registered by Industry and Trade Service of Lampung Province (Thousand US $), 2009 – 2014. Retrieved from https://lampung.bps.go.id/dynamictable/2017/03/31/201/nilai-ekspor-komoditi-pertanian-dan-kehutanan-yang-tercatat-pada-dinas-perindustrian-dan-perdagangan-propinsi-lampung-000-us-2009---2014.html. Accessed 8 Jul 2019.
  59. Statistics of Lampung Province. (2017b). Robusta Coffee Crop Production of Smallholder Estate by Regency/Municipality in Lampung Province, 2014 (Tones). Retrieved from https://lampung.bps.go.id/dynamictable/2017/03/29/165/produksi-tanaman-kopi-robusta-perkebunan-rakyat-menurut-kabupaten-kota-di-provinsi-lampung-2014-ton-.html. Accessed 3 Mar 2019.
  60. Su, Z.-A., Zhang, J.-H., & Nie, X.-J. (2010). Effect of soil erosion on soil properties and crop yields on slopes in the Sichuan Basin, China. Pedosphere, 20(6), 736–746.  https://doi.org/10.1016/S1002-0160(10)60064-1.CrossRefGoogle Scholar
  61. Sunderlin, W. D. (2002). Effects of Crisis and Political Change, 1997-1999. In C. J. P. Colfer & I. A. P. Resosudarmo (Eds.), Which Way Forward ? People, Forests, and Policymaking in Indonesia (1st ed., pp. 246–276). New York: Resources for The Future Retrieved from https://www.researchgate.net/publication/265510248_Which_Way_Forward_People_Forests_and_Policymaking. Accessed 8 Sept 2018.
  62. Verbist, B., Poesen, J., van Noordwijk, M., Widianto, Suprayogo, D., Agus, F., & Deckers, J. (2010). Factors affecting soil loss at plot scale and sediment yield at catchment scale in a tropical volcanic agroforestry landscape. Catena, 80(1), 34–46.  https://doi.org/10.1016/j.catena.2009.08.007.CrossRefGoogle Scholar
  63. Verheijen, F. G. A., Jones, R. J. A., Rickson, R. J., & Smith, C. J. (2009). Tolerable versus actual soil erosion rates in Europe. Earth-Science Reviews, 94(1–4), 23–38.  https://doi.org/10.1016/j.earscirev.2009.02.003.CrossRefGoogle Scholar
  64. Widianto, Suprayogo, D., Noveras, H., Widodo, R. H., Purnomosidhi, P., & van Noordwijk, M. (2004). Alih guna lahan hutan menjadi lahan pertanian: Apakah fungsi hidrologis hutan dapat digantikan sistem kopi monokultur? [Land use conversion from forest to agriculture land: Can the function of forest hydrology be replaced by mono-cropping coffee?]. Agrivita, 26(1), 47–52. Retrieved from http://www.worldagroforestry.org/sea/Publications/files/book/BK0063-04-6.pdf. Accessed 28 Mar 2017.
  65. Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: A guide to conservation planning. USDA, Agriculture Handbook no. 537 Retrieved from https://naldc.nal.usda.gov/download/CAT79706928/PDF. Accessed 5 Jan 2015.
  66. Xiong, M., Sun, R., & Chen, L. (2018). Effects of soil conservation techniques on water erosion control: A global analysis. Science of the Total Environment, 645, 753–760.  https://doi.org/10.1016/j.scitotenv.2018.07.124.CrossRefGoogle Scholar
  67. Xu, E., & Zhang, H. (2016). Aggregating land use quantity and intensity to link water quality in upper catchment of Miyun Reservoir. Ecological Indicators, 66, 329–339.  https://doi.org/10.1016/j.ecolind.2016.02.002.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.United Graduate School of Agricultural SciencesTottori UniversityTottoriJapan
  2. 2.Indonesian Soil Research InstituteBogorIndonesia
  3. 3.Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
  4. 4.Faculty of AgricultureUniversity of LampungBandar LampungIndonesia
  5. 5.Faculty of Life and Environmental SciencesShimane UniversityMatsueJapan

Personalised recommendations