Advertisement

Phytoplankton response to water quality seasonality in a Brazilian neotropical river

  • 91 Accesses

Abstract

Tropical wet-dry climate seasonality is widely recognized as an important condition to phytoplankton communities’ structure in freshwater ecosystems; however, there are few studies in that field in northeast Brazilian rivers. This study aimed to evaluate the influence of water quality seasonal variability over the phytoplankton dynamics and identify seasonality in eutrophication phenomena in a poorly studied neotropical river. Water quality variables and phytoplankton were examined within the Jequitinhonha River lower course, Bahia (Brazil) from 2010 to 2012. A 3-year time series was analyzed for both rainy and dry seasons. Descriptive, inferential, and multivariate analyses (CCA) were performed. Results indicated that chemical oxygen demand, dissolved aluminum, and turbidity were the main factors which influenced phytoplankton community structure and composition. Dry season was favorable for diatoms and Chlorophyceae (chlorophylls) while rainy season was favorable for cyanobacteria. Still, it was revealed that, in dry season, lower values for turbidity, chemical oxygen demand, dissolved aluminum, and dissolved iron were related with an eutrophication phenomenon.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alhassan, E. H. (2015). Seasonal variations in phytoplankton diversity in the Bui dam area of the Black Volta in Ghana during the pre-and post-impoundment periods. Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN (Vol. 63). http://www.scielo.sa.cr/pdf/rbt/v63n1/a03v63n1.pdf. Accessed 28 September 2018

  2. Ali, M., & Sreekrishnan, T. (2001). Aquatic toxicity from pulp and paper mill effluents: a review. Advances in Environmental Research, 5(2), 175–196. https://doi.org/10.1016/S1093-0191(00)00055-1.

  3. Alvarez-Cobelas, M., Reynolds, C. S., Sanchez-Castillo, P., & Kristiansen, J. (1998). Phytoplankton and Trophic Gradients. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-2668-9.

  4. APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association http://www.ncbi.nlm.nih.gov/pubmed/17489283.

  5. Arimoro, F. O., Olisa, H. E., Keke, U. N., Ayanwale, A. V., & Chukwuemeka, V. I. (2018). Exploring spatio-temporal patterns of plankton diversity and community structure as correlates of water quality in a tropical stream. Acta Ecologica Sinica. https://doi.org/10.1016/j.chnaes.2017.10.002.

  6. Ayres, M., Ayres Júnior, M., Ayres, D. L., & Santos, A. A. (2007). BioEstat - Aplicações estatísticas nas áreas as ciências Bio-Médicas. Belém, PA: Instituto Mamirauá.

  7. Baker, A. (2003). Land use and water quality. Hydrological Processes, 17(12), 2499–2501. https://doi.org/10.1002/hyp.5140.

  8. Bernal, J. M. da S. (2009). Contribuição do aporte fluvial de sedimentos para a construção da planície deltaica do Rio Jequitinhonha - BA. Universidade Federal da Bahia.

  9. Brandao, I. L., de Mannaerts, C. M. S., & Saraiva, A. C. F. (2017). Seasonal variation of phytoplankton indicates small impacts of anthropic activities in a Brazilian Amazonian reserve. Ecohydrology & Hydrobiology, 17(3), 217–226. https://doi.org/10.1016/J.ECOHYD.2017.04.001.

  10. Bretherton, L., Kamalanathan, M., Genzer, J., Hillhouse, J., Setta, S., Liang, Y., Brown, C. M., Xu, C., Sweet, J., Passow, U., Finkel, Z. V., Irwin, A. J., Santschi, P. H., & Quigg, A. (2018). Response of natural phytoplankton communities exposed to crude oil and chemical dispersants during a mesocosm experiment. Aquatic Toxicology, 206, 43–53. https://doi.org/10.1016/j.aquatox.2018.11.004.

  11. Cao, J., Hou, Z., Li, Z., Chu, Z., Yang, P., & Zheng, B. (2018). Succession of phytoplankton functional groups and their driving factors in a subtropical plateau lake. Science of the Total Environment, 631–632, 1127–1137. https://doi.org/10.1016/j.scitotenv.2018.03.026.

  12. Carrera-Martinez, D., Mateos-Sanz, A., Lopez-Rodas, V., & Costas, E. (2011). Adaptation of microalgae to a gradient of continuous petroleum contamination. Aquatic Toxicology, 101(2), 342–350. https://doi.org/10.1016/j.aquatox.2010.11.009.

  13. Chien, Y. C., Wu, S. C., Chen, W. C., & Chou, C. C. (2013). Model simulation of diurnal vertical migration patterns of different-sized colonies of Microcystis employing a particle trajectory approach. Environmental Engineering Science, 30(4), 179–186. https://doi.org/10.1089/ees.2012.0318.

  14. Costa, L. S., Huszar, V. L. M., & Ovalle, A. R. (2009). Phytoplankton functional groups in a tropical estuary: Hydrological control and nutrient limitation. Estuaries and Coasts, 32(3), 508–521. https://doi.org/10.1007/s12237-009-9142-3.

  15. da Costa, D. F., & Dantas, Ê. W. (2012). Diversity of phytoplankton community in different urban aquatic ecosystems in metropolitan João Pessoa, state of Paraíba, Brazil. Acta Limnologica Brasiliensia, 23(4), 394–405. https://doi.org/10.1590/S2179-975X2012005000018.

  16. Devercelli, M., & O’Farrell, I. (2013). Factors affecting the structure and maintenance of phytoplankton functional groups in a nutrient rich lowland river. Limnologica, 43(2), 67–78. https://doi.org/10.1016/j.limno.2012.05.001.

  17. Dominguez, J., Andrade, A., Almeida, A., & Bittencourt, A. (2009). The Holocene barrier strandplains of the State of Bahia. In S. Dillenburg & P. Hesp (Eds.), Geology and Geomorphology of Holocene Coastal Barrier of Brazil. Lecture Notes in Earth Sciences (pp. 253–285). Berlin: Springer Verlag.

  18. Dunck, B., Felisberto, S. A., & de Souza Nogueira, I. (2019). Effects of freshwater eutrophication on species and functional beta diversity of periphytic algae. Hydrobiologia, 837(1), 195–204. https://doi.org/10.1007/s10750-019-03971-x.

  19. Edler, L., & Elbrächter, M. (2010). The utermöhl method for quantitative phytoplankton analysis. In B. Karlso, C. Cusack, & E. Bresnan (Eds.), Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis (pp. 13–20). Paris: Intergovernmental Oceanographic Commission of ©UNESCO.

  20. Feng, X., Porporato, A., & Rodriguez-Iturbe, I. (2013). Changes in rainfall seasonality in the tropics. Nature Climate Change, 3(9), 811–815. https://doi.org/10.1038/nclimate1907.

  21. Gamito, S. (2010). Caution is needed when applying Margalef diversity index. Ecological Indicators, 10(2), 550–551. https://doi.org/10.1016/j.ecolind.2009.07.006.

  22. Ibáñez, C., Alcaraz, C., Caiola, N., Rovira, A., Trobajo, R., Alonso, M., et al. (2012). Regime shift from phytoplankton to macrophyte dominance in a large river: top-down versus bottom-up effects. Science of the Total Environment, The, 416, 314–322. https://doi.org/10.1016/j.scitotenv.2011.11.059.

  23. IBGE. (2010). Censo 2010. https://censo2010.ibge.gov.br/. Accessed 6 February 2018

  24. INEMA. (2015). Programa Monitora: Relatório Anual de Qualidade das Águas do Estado da Bahia - Ano 2015. http://www.inema.ba.gov.br/wp-content/uploads/2011/10/RelatorioAnual2015.pdf

  25. INEMA. (2018). Relatório de Informações Hidrológicas e Meteorológicas. monitoramento.inema.ba.gov.br/planilhas/plu/.

  26. Leps, J., & Smilauer, P. (2003). Multivariate Analysis of Ecological Data usingCANOCO This. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki. https://doi.org/10.1017/CBO9780511615146.

  27. Lopes, O. F., Rocha, F. A., de Sousa, L. F., da Silva, D. M. L., Amorim, A. F., Gomes, R. L., da Silva Junior, A. L. S., & de Jesus, R. M. (2019). Influence of land use on trophic state indexes in northeast Brazilian river basins. Environmental Monitoring and Assessment, 191(2), 77. https://doi.org/10.1007/s10661-019-7188-7.

  28. Lundberg, C. (2013). Eutrophication, risk management and sustainability. The perceptions of different stakeholders in the northern Baltic Sea. Marine Pollution Bulletin, 66(1–2), 143–150. https://doi.org/10.1016/J.MARPOLBUL.2012.09.031.

  29. MapBiomas. (2019). Coleção 3.0. Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. http://mapbiomas.org/. Accessed 10 March 2019

  30. Margalef, R. (1983). Limnología. Ediciones Omega.

  31. Moses, N., Umar, D., Saidu, H., Kotus, A., Lucky, D., & Angelini, P. (2016). Effect of riparian land use on phytoplankton characteristics of Kwadon Stream, Gombe State of Nigeria. Asian Journal of Biology, 1(2), 1–14. https://doi.org/10.9734/AJOB/2016/31089.

  32. Moura, A. N., Severiano, J. S., Tavares, N., & Dantas, E. W. (2013). The role of a cascade of reservoirs and seasonal variation in the phytoplankton structure in a tropical river. Braz. J. Biol (Vol. 73). http://www.scielo.br/pdf/bjb/v73n2/1519-6984-bjb-73-02-291.pdf. Accessed 28 September 2018

  33. Oberholster, P. J., Blaise, C., & Botha, A.-M. (2010). Phytobenthos and phytoplankton community changes upon exposure to a sunflower oil spill in a South African protected freshwater wetland. Ecotoxicology, 19(8), 1426–1439. https://doi.org/10.1007/s10646-010-0528-6.

  34. Okogwu, O. I., & Ugwumba, A. O. (2013). Seasonal dynamics of phytoplankton in two tropical rivers of varying size and human impact in Southeast Nigeria. Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN (Vol. 61). http://www.scielo.sa.cr/pdf/rbt/v61n4/a21v61n4.pdf.

  35. ONS. (2019). Histórico da operação - Dados hidrológicos/Vazões. http://ons.org.br/Paginas/resultados-da-operacao/historico-da-operacao/dados_hidrologicos_vazoes.aspx. Accessed 20 February 2019

  36. Padisák, J., Scheffler, W., Sípos, C., Kasprzak, P., Koschel, R., & Krienitz, L. (2003). Spatial and temporal pattern of development and decline of the spring diatom populations in Lake Stechlin in 1999. Archiv für Hydrobiologie, 58(November 2015), 135–155.

  37. Padisák, J., Crossetti, L. O., & Naselli-Flores, L. (2009). Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia, 621(1), 1–19. https://doi.org/10.1007/s10750-008-9645-0.

  38. Pereira, P. R. B., Diniz, H. N., Gutjahr, M. R., Menegasse, L. N., Oliveira, F. R., & Duarte, U. (2018). O ZONEAMENTO CLIMÁTICO NA BACIA DO RIO JEQUITINHONHA, ESTADO DE MINAS GERAIS, BRASIL, (November). https://www.researchgate.net/publication/267242274_O_ZONEAMENTO_CLIMATICO_NA_BACIA_DO_RIO_JEQUITINHONHA_ESTADO_DE_MINAS_GERAIS_BRASIL

  39. Peresin, D., Torgan, L. C., Schulz, U. H., & Crossetti, L. O. (2014). Structure of potamoplankton along a gradient of preservation of riparian vegetation in subtropical streams. Anais da Academia Brasileira de Ciências, 86(2), 841–853. https://doi.org/10.1590/0001-3765201420130318.

  40. Pérez Hernández, D., & López, J. L. (1998). Alguno aspectos relevantes de la hidrología del Río Orinoco. In El Río Orinoco (pp. 138–154).

  41. Reynolds, C. S. (2006). The ecology of phytoplankton. The Ecology of Phytoplankton. https://doi.org/10.1017/CBO9780511542145.

  42. Reynolds, C. S., & Descy, J.-P. (1996). The production, biomass and structure of phytoplankton in large rivers. River Systems. https://doi.org/10.1127/lr/10/1996/161.

  43. Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S. (2002). Review towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 24(5), 417–428. https://doi.org/10.1093/plankt/24.5.417.

  44. Rodrigues, V., Estrany, J., Ranzini, M., de Cicco, V., Martín-Benito, J. M. T. M. T., Hedo, J., & Lucas-Borja, M. E. (2017). Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of Córrego Água Limpa, São Paulo (Brazil). Science of the Total Environment, 622–623, 1553–1561. https://doi.org/10.1016/j.scitotenv.2017.10.028.

  45. Santana, L. M., Moraes, M. E. B., Silva, D. M. L., & Ferragut, C. (2016). Spatial and temporal variation of phytoplankton in a tropical eutrophic river. Brazilian Journal of Biology, 76(3), 600–610. https://doi.org/10.1590/1519-6984.18914.

  46. Shannon, C. E., & Weaver, W. (1963). The mathematical theory of communication. Urbana, IL, USA: University of Illinois Press.

  47. Silva, V. de A. (2012). Geomorfologia antropogênica: Mudanças no padrão de drenagem do canal principal e delta, no baixo curso do Rio Jequitinhonha/BA. Universidade Estadual de Campinas.

  48. Sin, Y., Wetzel, R. L., & Anderson, I. C. (1999). Spatial and temporal characteristics of nutrient and phytoplankton dynamics in the York River Estuary, Virginia: Analyses of Long-Term Data. Estuaries, 22(2), 260. https://doi.org/10.2307/1352982.

  49. Singh, P., Haritashya, U. K., & Kumar, N. (2004). Seasonal changes in meltwater storage and drainage characteristics of the Dokriani Glacier, Garhwal Himalayas (India). Hyrology Research, 35(1), 15–29.

  50. Tundisi, G., & Matsumura, T. (2011). Limnology.

  51. Tundisi, J. G., Matsumura-Tundisi, T., & Abe, D. S. (2007). Climate monitoring before and during limnological studies: a needed integration. Brazilian journal of biology = Revista brasleira de biologia, 67(4), 795–796. https://doi.org/10.1590/S1519-69842007000400034.

  52. Tyokumbur, E. T., & Okorie, T. (2013). Studies on the distribution and abundance of plankton in Awba stream and reservoir, University of Ibadan. Open Journal of Ecology, 03(04), 273–278. https://doi.org/10.4236/oje.2013.34031.

  53. Uehlinger, V. (1964). Etude statistique des méthodes de dénombrement planctonique. impr. A. Kundig. https://books.google.com.br/books?id = E6rLygAACAAJ

  54. Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Stuttgart, Germany: Schweizerbart Science Publishers http://www.schweizerbart.de//publications/detail/isbn/9783510520091/Mitteilungen_IVL_Nr_9.

  55. Veracel Celulose S. A. (2013). Relatório de Sustentabilidade Veracel Celulose 2012. Belmonte. http://www.veracel.com.br/wp-content/uploads/2015/01/Veracel-Relatorio-de-Sustentabilidade-2012.pdf

  56. Wehr, J., Sheath, R., & Kociolek, P. (2015). Freshwater Algae of North America: Ecology and Classification.

  57. Yang, J. R., Lv, H., Isabwe, A., Liu, L., Yu, X., Chen, H., & Yang, J. R. (2017). Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs. Water Research, 120, 52–63. https://doi.org/10.1016/j.watres.2017.04.062.

  58. Zhang, Y., Shi, K., Liu, J., Deng, J., Qin, B., Zhu, G., & Zhou, Y. (2016). Meteorological and hydrological conditions driving the formation and disappearance of black blooms, an ecological disaster phenomena of eutrophication and algal blooms. Science of the Total Environment, 569–570, 1517–1529. https://doi.org/10.1016/j.scitotenv.2016.06.244.

Download references

Acknowledgment

Thanks to CETREL S/A for collecting and analyzing water quality samples.

Funding information

This research was partially supported by VERACEL Papel e Celulose and was conducted during a scholarship Financed by CAPES–Central de Aperfeiçoamento de Pessoal de Ensino Superior–Finance Code 001, within the Ministério da Educação do Brasil.

Author information

Correspondence to Igor Lima Aboim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aboim, I.L., Gomes, D.F. & Mafalda Junior, P.O. Phytoplankton response to water quality seasonality in a Brazilian neotropical river. Environ Monit Assess 192, 70 (2020) doi:10.1007/s10661-019-7882-5

Download citation

Keywords

  • Phytoplankton ecology
  • Functional groups
  • Jequitinhonha River
  • Eutrophication