Advertisement

Assessment of air purifier on efficient removal of airborne bacteria, Staphylococcus epidermidis, using single-chamber method

  • Jung Hoon Lee
  • Jeong Yup Kim
  • Bo-Bae Cho
  • J. R. Anusha
  • Ju Yong Sim
  • C. Justin Raj
  • Kook-Hyun YuEmail author
Article
  • 25 Downloads

Abstract

We evaluated the efficiency of an air purifier using the single-chamber method for the effective removal of airborne Staphylococcus epidermidis, a nosocomial infection–causing bacterium. In this experiment, the bacterial strain S. epidermidis was injected using a nebulizer into the test chamber, which was similar to a consumer living space (60 m3). The microbial sampling was conducted via the air sampler method, and the reduction in S. epidermidis growth was monitored by performing three consecutive tests. Initially, a blank test was conducted to determine the natural decay rate and calibrate the experimental setup. After injecting the bacterial strain from 1240 to 11180 CFU per unit volume (m3), the natural decay rate showed a maximum deviation of 3.1% with a sampling error of 1.1% p at a confidence level of 95%. In addition, the particle size distribution in the test chamber was found to range from 0.3 to 5.0 μm, and a subsequent decrease in large-sized particles was observed with the operation of the air purifier, which is the size similar to that of suspended airborne bacteria. This can be used to assess the performance of the air purifier by calibrating the natural reduction value to the reduced operation value. Thus, the single-chamber technique is a promising approach for analyzing the removal efficacy of airborne bacteria from indoor air.

Keywords

Airborne bacteria Bioaerosols Air purifier Single-chamber method Staphylococcus epidermidis 

Notes

References

  1. Aliabadi, A. A., Rogak, S. N., Bartlett, K. H., & Green, S. I. (2011). Preventing airborne disease transmission: review of methods for ventilation design in health care facilities. Advances in Preventive Medicine, 2011, 124064.  https://doi.org/10.4061/2011/124064.CrossRefGoogle Scholar
  2. Berry, D., Mainelis, G., & Fennell, D. (2007). Effect of an ionic air cleaner on indoor/outdoor particle ratios in a residential environment. Aerosol Science and Technology, 41(3), 315–328.  https://doi.org/10.1080/02786820701199702.CrossRefGoogle Scholar
  3. Bonetta, S., Bonetta, S., Mosso, S., Sampo, S., & Carraro, E. (2010). Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system. Environmental Monitering Assessment, 161(1-4), 473–483.  https://doi.org/10.1007/s10661-009-0761-8.CrossRefGoogle Scholar
  4. Bzdek, B. R., & Reid, J. P. (2017). Perspective: aerosol microphysics: from molecules to the chemical physics of aerosols. J. Chem. Phys, 147, 220901.  https://doi.org/10.1063/1.5002641.CrossRefGoogle Scholar
  5. Chessa, D., Ganau, G., Spiga, L., Bulla, A., Mazzarello, V., Campus, G. V., & Rubino, S. (2016). Staphylococcus aureus and Staphylococcus epidermidis virulence strains as causative agents of persistent infections in breast implants. PLoS One, 11(1), e0146668.  https://doi.org/10.1371/journal.pone.0146668.CrossRefGoogle Scholar
  6. Chiu, S., Black, C. L., Yue, X., Greby, S. M., Laney, A. S., Campbell, A. P., & de Perio, M. A. (2017). Working with influenza-like illness: presenteeism among US health care personnel during the 2014-2015 influenza season. American journal of infection control, 45(11), 1254–1258.  https://doi.org/10.1016/j.ajic.2017.04.008.CrossRefGoogle Scholar
  7. Cuong, V., & Michael, O. (2002). Staphylococcus epidermidis infections. Microbes and infection, 4, 481–489.CrossRefGoogle Scholar
  8. Di Giulio, M., Grande, R., Di Campli, E., Di Bartolomeo, S., & Cellini, L. (2010). Indoor air quality in university environments. Environmental Monitering Assessment, 170(1-4), 509–517.  https://doi.org/10.1007/s10661-009-1252-7.CrossRefGoogle Scholar
  9. Eickhoff, T. C. (1996). Airborne disease: including chemical and biological warfare. American Journal of Epidemiology, 144(8), S39–S46.CrossRefGoogle Scholar
  10. Foarde, K. K. (2010). Development of a method for measuring single-pass bioaerosol removal efficiencies of a room air cleaner. Aerosol Science and Technology, 30(2), 223–234.  https://doi.org/10.1080/027868299304804.CrossRefGoogle Scholar
  11. Frankel, M., Beko, G., Timm, M., Gustavsen, S., Hansen, E. W., & Madsen, A. M. (2012). Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate. Applied and environmental microbiology, 78(23), 8289–8297.  https://doi.org/10.1128/AEM.02069-12.CrossRefGoogle Scholar
  12. Herrera-Cantú, I., García-Aguilar, K., Pedraza-Gress, E., Vázquez-López, E., García-Mar, J. J., Flores-González, L. A., et al. (2017). Quantic analysis of the adherence of a gram-negative bacteria in a HEPA filter. International Journal of Advanced Engineering, Management and Science, 3(12), 1122–1125.  https://doi.org/10.24001/ijaems.3.12.5.CrossRefGoogle Scholar
  13. Kelley, S. T., & Gilbert, J. A. (2013). Studying the microbiology of the indoor environment. Genome biology, 14(2), 202.  https://doi.org/10.1186/gb-2013-14-2-202.CrossRefGoogle Scholar
  14. Ki Youn, K., Yoon Shin, K., & Daekeun, K. (2010). Distribution characteristics of airborne bacteria nad fungi in the general hospital of Korea. Industrial Health, 48, 236–243.CrossRefGoogle Scholar
  15. Kujundzic, E., Hernandez, M., & Miller, S. L. (2006). Particle size distributions and concentrations of airborne endotoxin using novel collection methods in homes during the winter and summer seasons. Indoor Air, 16(3), 216–226.  https://doi.org/10.1111/j.1600-0668.2005.00419.x.CrossRefGoogle Scholar
  16. Lee, B. U., Sun, H. Y., Ji, J.-H., & Bae, G.-N. (2008). Inactivation of S. epidermidis, B. subtilis, and E. coli bacteria bioaerosols deposited on a filter utilizing airborne silver nanoparticles. Journal of Microbiology and Biotechnology, 18(1), 176–182.Google Scholar
  17. Lenart-Boron, A., Wolny-Koladka, K., Juraszek, K., & Kasprowicz, A. (2017). Phenotypic and molecular assessment of antimicrobial resistance profile of airborne Staphylococcus spp. isolated from flats in Krakow. Aerobiologia (Bologna), 33(3), 435–444.  https://doi.org/10.1007/s10453-017-9481-7.CrossRefGoogle Scholar
  18. Maimaitireyimu, W., Lu, X., Patrick, K. H. L., & Zhi, N. (2015). Development and laboratory evaluation of a compact swirling aerosol sampler (SAS) for collection of atmospheric bioaerosols. Atmospheric Pollution Research, 6(4), 556–561.CrossRefGoogle Scholar
  19. Medical Advisory Secretariat. (2005). Air cleaning technologies: an evidence-based analysis. Ontario Health Technology Assessment Series, 5(17), 1–52.Google Scholar
  20. Metts, T. A., & Batterman, S. A. (2006). Effect of VOC loading on the ozone removal efficiency of activated carbon filters. Chemosphere., 62(1), 34–44.CrossRefGoogle Scholar
  21. Mittal, H., Parks, S. R., Pottage, T., Walker, J. T., & Bennett, A. M. (2011). Survival of microorganisms on HEPA filters. Applied Biosafety, 16(3), 163–166.CrossRefGoogle Scholar
  22. Normand, A. C., Ranque, S., Cassagne, C., Gaudart, J., Sallah, K., Charpin, D. A., et al. (2016). Comparison of air impaction and electrostatic dust collector sampling methods to assess airborne fungal contamination in public buildings. Annals of Work Exposures and Health, 60(2), 161–175.  https://doi.org/10.1093/annhyg/mev075.CrossRefGoogle Scholar
  23. Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., et al. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology, 2, 8.  https://doi.org/10.1186/1743-8977-2-8.CrossRefGoogle Scholar
  24. Okten, S., & Asan, A. (2012). Airborne fungi and bacteria in indoor and outdoor environment of the Pediatric Unit of Edirne Government Hospital. Environmental Monitering and Assessment, 184(3), 1739–1751.  https://doi.org/10.1007/s10661-011-2075-x.CrossRefGoogle Scholar
  25. Otto, M. (2009). Staphylococcus epidermidis-the ‘accidental’ pathogen. Nature Reviews Microbiology, 7(8), 555–567.  https://doi.org/10.1038/nrmicro2182.CrossRefGoogle Scholar
  26. Park, C. W., Yoon, K. Y., Do Kim, Y., Park, J. H., & Hwang, J. (2011). Effects of condensational growth on culturability of airborne bacteria: implications for sampling and control of bioaerosols. Journal of Aerosol Science, 42, 213–223.CrossRefGoogle Scholar
  27. Pham, T.-D., & Lee, B.-K. (2015). Disinfection of Staphylococcus aureus in indoor aerosols using Cu–TiO2 deposited on glass fiber under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 307-308, 16–22.  https://doi.org/10.1016/j.jphotochem.2015.04.002.CrossRefGoogle Scholar
  28. Raisi, L., Aleksandropoulou, V., Lazaridis, M., & Katsivela, E. (2012). Size distribution of viable, cultivable, airborne microbes and their relationship to particulate matter concentrations and meteorological conditions in a Mediterranean site. Aerobiologia, 29(2), 233–248.  https://doi.org/10.1007/s10453-012-9276-9.CrossRefGoogle Scholar
  29. Shrivastava, S. R., Shrivastava, P. S., & Ramasamy, J. (2013). Airborne infection control in healthcare settings. Infection Ecology and Epidemiology, 3(1), 21411.  https://doi.org/10.3402/iee.v3i0.21411.CrossRefGoogle Scholar
  30. Sørensen, M. D., Sørensen, B., Gonzalez-Dosal, R., Melchjorsen, C. J., Weibel, J., Wang, J., Jun, C. W., Huanming, Y., & Kristensen, P. (2006). Severe acute respiratory syndrome (SARS). Annals of the New York Academy of Sciences, 1067, 500–505.CrossRefGoogle Scholar
  31. Taylor, M., McCollister, B., & Park, D. (2016). Highly bactericidal polyurethane effective against both normal and drug-resistant bacteria: potential use as an air filter coating. Applied Biochemistry and Biotechnology, 178(5), 1053–1067.  https://doi.org/10.1007/s12010-015-1928-0.CrossRefGoogle Scholar
  32. Tellier, R. (2009). Aerosol transmission of influenza A virus: a review of new studies. Journal of the Royal Society Interface, 6(Suppl 6), S783–S790.  https://doi.org/10.1098/rsif.2009.0302.focus.CrossRefGoogle Scholar
  33. Tham, K. W., & Zuraimi, M. S. (2005). Size relationship between airborne viable bacteria and particles in a controlled indoor environment study. Indoor Air, 15(9), 48–57.CrossRefGoogle Scholar
  34. Wen, Z., Yang, W., Li, N., Wang, J., Hu, L., Li, J., et al. (2014). Assessment of the risk of infectious aerosols leaking to the environment from BSL-3 laboratory HEPA air filtration systems using model bacterial aerosols. Particuology, 13, 82–87.  https://doi.org/10.1016/j.partic.2012.11.009.CrossRefGoogle Scholar
  35. Wieser, M., & Busse, H.-J. (2000). Rapid identification of Staphylococcus epidermidis. International Journal of Systematic and Evolutionary Microbiology, 50, 1087–1093.CrossRefGoogle Scholar
  36. Zacarías, S. M., Satuf, M. L., Vaccari, M. C., & Alfano, O. M. (2012). Efficiency evaluation of different TiO2 coatings on the photocatalytic inactivation of airborne bacterial spores. Industrial and Engineering Chemistry Research, 51(42), 13599–13608.  https://doi.org/10.1021/ie3009956.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jung Hoon Lee
    • 1
  • Jeong Yup Kim
    • 2
  • Bo-Bae Cho
    • 3
  • J. R. Anusha
    • 2
    • 4
  • Ju Yong Sim
    • 2
  • C. Justin Raj
    • 2
  • Kook-Hyun Yu
    • 2
    Email author
  1. 1.Environmental Convergence Technology CenterKorea Testing LaboratorySeoulRepublic of Korea
  2. 2.Department of ChemistryDongguk UniversitySeoulRepublic of Korea
  3. 3.Materials DepartmentBiot Korea Inc.GwangjuRepublic of Korea
  4. 4.Department of Advanced Zoology and BiotechnologyLoyola CollegeChennaiIndia

Personalised recommendations