Advertisement

Exponential decay of between-month spatial dissimilarity congruence of phytoplankton communities in relation to phosphorus in a highland eutrophic lake

  • Huan Wang
  • Weizhen Zhang
  • Ping XieEmail author
  • Hong ShenEmail author
Article
  • 27 Downloads

Abstract

Phytoplankton species composition has long been recognized to be structured by environmental filtering, but our knowledge of patterns of spatial dissimilarity congruence between the phytoplankton community and environmental divers is rather limited. Specifically, a study on whether there are specific temporal properties that could be more related to spatial dissimilarity remains to be seen. We examined the extent to how spatial dissimilarity changed with seasonal succession by measuring β-diversity in phytoplankton communities in Lake Erhai (from January 2012 to December 2014 at 15 sampling sites) as a function of different period conditions (high-density period and low-density period). We found that congruences of spatial dissimilarity in algal communities over time were neither stable in time nor showed a seasonal pattern. The spatial dissimilarity congruence between the phytoplankton community and dissolved inorganic phosphorus (DIP) concentration followed exponential decay patterns, and this congruence was led by algal cell density. This result implies that species and functions of phytoplankton are specialized, and DIP concentration drastically increases in high-density periods than in low-density periods. This means that DIP enrichment is related to the loss of algal diversity and functions and the increase of algal biomass in eutrophic lakes.

Keywords

β-Diversity Spatial dissimilarity Exponential decay Phytoplankton density Dissolved inorganic phosphorus 

Notes

Acknowledgments

We thank Rong Zhu for her help on sample collection.

Funding information

This study was jointly supported by the National Natural Science Foundation of China (31400407), the National Key Research and Development Program of China (2017YFA0605201), the State Key of Laboratory of Plateau Ecology and Agriculture, Qinghai University (2017ZZ13) and the State Key Laboratory of freshwater ecology and biotechnology (2019FBZ03).

Supplementary material

10661_2019_7835_MOESM1_ESM.docx (114 kb)
ESM 1 (DOCX 113 kb)

References

  1. Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., et al. (2011). Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters, 14(1), 19–28.CrossRefGoogle Scholar
  2. Baselga, A. (2017). Partitioning abundance-based multiple-site dissimilarity into components: balanced variation in abundance and abundance gradients. Methods in Ecology and Evolution, 8(7), 799–808.CrossRefGoogle Scholar
  3. Behrenfeld, M. J., O’Malley, R. T., Boss, E. S., Westberry, T. K., Graff, J. R., Halsey, K. H., et al. (2016). Revaluating ocean warming impacts on global phytoplankton. Nature Climate Change, 6(3), 323.CrossRefGoogle Scholar
  4. Chen, M., Ding, S., Chen, X., Sun, Q., Fan, X., Lin, J., et al. (2018). Mechanisms driving phosphorus release during algal blooms based on hourly changes in iron and phosphorus concentrations in sediments. Water Research, 133, 153–164.CrossRefGoogle Scholar
  5. Declerck, S., Vandekerkhove, J., Johansson, L., Muylaert, K., Conde-Porcuna, J., Van Der Gucht, K., et al. (2005). Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology, 86(7), 1905–1915.CrossRefGoogle Scholar
  6. Ding, S., Chen, M., Gong, M., Fan, X., Qin, B., Xu, H., et al. (2018). Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Science of the Total Environment, 625, 872–884.CrossRefGoogle Scholar
  7. Dong, X., Muneepeerakul, R., Olden, J., & Lytle, D. (2015). The effect of spatial configuration of habitat capacity on β diversity. Ecosphere, 6(11), 1–11.CrossRefGoogle Scholar
  8. Edwards, K. F., Thomas, M. K., Klausmeier, C. A., & Litchman, E. (2016). Phytoplankton growth and the interaction of light and temperature: a synthesis at the species and community level. Limnology and Oceanography, 61(4), 1232–1244.CrossRefGoogle Scholar
  9. Elliott, J. (2010). The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Global Change Biology, 16(2), 864–876.CrossRefGoogle Scholar
  10. Gianuca, A. T., Declerck, S. A., Lemmens, P., & De Meester, L. (2017). Effects of dispersal and environmental heterogeneity on the replacement and nestedness components of β-diversity. Ecology, 98(2), 525–533.CrossRefGoogle Scholar
  11. Grime, J. P. (1979). Plant strategies and vegetation processes. Plant strategies and vegetation processes.Google Scholar
  12. Harris, G. (2012). Phytoplankton ecology: structure, function and fluctuation. Berlin: Springer Science & Business Media.Google Scholar
  13. Havens, K. E., Phlips, E. J., Cichra, M. F., & Li, B. l. (1998). Light availability as a possible regulator of cyanobacteria species composition in a shallow subtropical lake. Freshwater Biology, 39(3), 547–556.CrossRefGoogle Scholar
  14. Heino, J., Melo, A. S., & Bini, L. M. (2015). Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems. Freshwater Biology, 60(2), 223–235.CrossRefGoogle Scholar
  15. Ho, J. C., & Michalak, A. M. (2017). Phytoplankton blooms in Lake Erie impacted by both long-term and springtime phosphorus loading. Journal of Great Lakes Research, 43(3), 221–228.CrossRefGoogle Scholar
  16. Hu, H. (2006). The freshwater algae of China: systematics, taxonomy and ecology. Beijing: Science Press.Google Scholar
  17. Huang, X., Chen, W., & Cai, Q. (1999). Survey, observation and analysis of lake ecology. Standard Methods for Observation and Analysis in Chinese Ecosystem Research Network, Series V.Google Scholar
  18. Interlandi, S. J., & Kilham, S. S. (2001). Limiting resources and the regulation of diversity in phytoplankton communities. Ecology, 82(5), 1270–1282.CrossRefGoogle Scholar
  19. Jeppesen, E., Peder Jensen, J., SØndergaard, M., Lauridsen, T., & Landkildehus, F. (2000). Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biology, 45(2), 201–218.CrossRefGoogle Scholar
  20. Jiang, X., Jin, X., Yao, Y., Li, L., & Wu, F. (2008). Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China. Water Research, 42(8-9), 2251–2259.CrossRefGoogle Scholar
  21. Kraft, N. J., Comita, L. S., Chase, J. M., Sanders, N. J., Swenson, N. G., Crist, T. O., et al. (2011). Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science, 333(6050), 1755–1758.CrossRefGoogle Scholar
  22. Legendre, P., Lapointe, F. J., & Casgrain, P. (1994). Modeling brain evolution from behavior: a permutational regression approach. Evolution, 48(5), 1487–1499.CrossRefGoogle Scholar
  23. Lehtinen, S., Tamminen, T., Ptacnik, R., & Andersen, T. (2017). Phytoplankton species richness, evenness, and production in relation to nutrient availability and imbalance. Limnology and Oceanography, 62(4), 1393–1408.CrossRefGoogle Scholar
  24. Lichstein, J. W. (2007). Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecology, 188(2), 117–131.CrossRefGoogle Scholar
  25. Liu, T., Zhou, W., Cheng, P., & Burr, G. (2018). A survey of the 14 C content of dissolved inorganic carbon in Chinese lakes. Radiocarbon, 60(2), 705–716.CrossRefGoogle Scholar
  26. Lozupone, C. A., Hamady, M., Kelley, S. T., & Knight, R. (2007). Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Applied and Environmental Microbiology, 73(5), 1576–1585.CrossRefGoogle Scholar
  27. Martiny, J. B., Eisen, J. A., Penn, K., Allison, S. D., & Horner-Devine, M. C. (2011). Drivers of bacterial β-diversity depend on spatial scale. Proceedings of the National Academy of Sciences, 108(19), 7850–7854.CrossRefGoogle Scholar
  28. Montgomery, D. C. (2017). Design and analysis of experiments. Hoboken: Wiley.Google Scholar
  29. Ni, Z., & Wang, S. (2015). Historical accumulation and environmental risk of nitrogen and phosphorus in sediments of Erhai Lake, Southwest China. Ecological Engineering, 79, 42–53.CrossRefGoogle Scholar
  30. Nogueira, I. D. S., Nabout, J. C., Ibañez, M. D. S. R., & Bourgoin, L. M. (2010). Determinants of beta diversity: the relative importance of environmental and spatial processes in structuring phytoplankton communities in an Amazonian floodplain. Acta Limnologica Brasiliensia, 22(3), 247–256.CrossRefGoogle Scholar
  31. North, R., Guildford, S., Smith, R., Havens, S., & Twiss, M. (2007). Evidence for phosphorus, nitrogen, and iron colimitation of phytoplankton communities in Lake Erie. Limnology and Oceanography, 52(1), 315–328.CrossRefGoogle Scholar
  32. Özkan, K., Jeppesen, E., Davidson, T. A., Søndergaard, M., Lauridsen, T. L., Bjerring, R., et al. (2014). Cross-taxon congruence in lake plankton largely independent of environmental gradients. Ecology, 95(10), 2778–2788.CrossRefGoogle Scholar
  33. Padfield, D., Yvon-Durocher, G., Buckling, A., Jennings, S., & Yvon-Durocher, G. (2016). Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecology Letters, 19(2), 133–142.CrossRefGoogle Scholar
  34. Padisák, J., Crossetti, L. O., & Naselli-Flores, L. (2009). Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia, 621(1), 1–19.CrossRefGoogle Scholar
  35. Przytulska, A., Bartosiewicz, M., & Vincent, W. F. (2017). Increased risk of cyanobacterial blooms in northern high-latitude lakes through climate warming and phosphorus enrichment. Freshwater Biology, 62(12), 1986–1996.CrossRefGoogle Scholar
  36. Pu, X., Cheng, H., Tysklind, M., Xie, J., Lu, L., & Yang, S. (2017). Occurrence of water phosphorus at the water-sediment interface of a freshwater shallow lake: indications of lake chemistry. Ecological Indicators, 81, 443–452.CrossRefGoogle Scholar
  37. R Development Core Team. (2014). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing http://www.R-project.org/.Google Scholar
  38. Rangel, L. M., Silva, L. H., Rosa, P., Roland, F., & Huszar, V. L. (2012). Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs. Hydrobiologia, 693(1), 13–28.CrossRefGoogle Scholar
  39. Rejas, D., Declerck, S., Auwerkerken, J., Tak, P., & Meester, L. D. (2005). Plankton dynamics in a tropical floodplain lake: fish, nutrients, and the relative importance of bottom-up and top-down control. Freshwater Biology, 50(1), 52–69.CrossRefGoogle Scholar
  40. Reynolds, C. S. (1980). Phytoplankton assemblages and their periodicity in stratifying lake systems. Ecography, 3(3), 141–159.CrossRefGoogle Scholar
  41. Reynolds, C. (1984). Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater Biology, 14(2), 111–142.CrossRefGoogle Scholar
  42. Reynolds, C. S. (1987). The response of phytoplankton communities to changing lake environments. Swiss Journal of Hydrology, 49(2), 220–236.CrossRefGoogle Scholar
  43. Reynolds, C. S. (1989). Physical determinants of phytoplankton succession. Plankton Ecology: Succession in Plankton Communities, 9–56.Google Scholar
  44. Reynolds, C., Irish, A., & Elliott, J. (2001). The ecological basis for simulating phytoplankton responses to environmental change (PROTECH). Ecological Modelling, 140(3), 271–291.CrossRefGoogle Scholar
  45. Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S. (2002). Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 24(5), 417–428.CrossRefGoogle Scholar
  46. Ruttenberg, K. C., & Dyhrman, S. T. (2005). Temporal and spatial variability of dissolved organic and inorganic phosphorus, and metrics of phosphorus bioavailability in an upwelling‐dominated coastal system. Journal of Geophysical Research: Oceans, 110(C10).Google Scholar
  47. Schlüter, L., Behl, S., Striebel, M., & Stibor, H. (2016). Comparing microscopic counts and pigment analyses in 46 phytoplankton communities from lakes of different trophic state. Freshwater Biology, 61(10), 1627–1639.CrossRefGoogle Scholar
  48. Stivrins, N., Kołaczek, P., Reitalu, T., Seppä, H., & Veski, S. (2015). Phytoplankton response to the environmental and climatic variability in a temperate lake over the last 14,500 years in eastern Latvia. Journal of Paleolimnology, 54(1), 103–119.CrossRefGoogle Scholar
  49. Toranza, C., & Arim, M. (2010). Cross-taxon congruence and environmental conditions. BMC Ecology, 10(1), 18.CrossRefGoogle Scholar
  50. Vonlanthen, P., Bittner, D., Hudson, A. G., Young, K. A., Müller, R., Lundsgaard-Hansen, B., et al. (2012). Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature, 482(7385), 357.CrossRefGoogle Scholar
  51. Wang, L., Xia, J., Yu, J., Yang, L., Zhan, C., Qiao, Y., et al. (2017). Spatial variation, pollution assessment and source identification of major nutrients in surface sediments of Nansi Lake, China. Water, 9(6), 444.CrossRefGoogle Scholar
  52. Watson, S. B., McCauley, E., & Downing, J. A. (1997). Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnology and Oceanography, 42(3), 487–495.CrossRefGoogle Scholar
  53. Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 213–251.CrossRefGoogle Scholar
  54. Xie, L., Xie, P., & Tang, H. (2003). Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms—an enclosure experiment in a hyper-eutrophic, subtropical Chinese lake. Environmental Pollution, 122(3), 391–399.CrossRefGoogle Scholar
  55. Yang, B., Jiang, Y.-J., He, W., Liu, W.-X., Kong, X.-Z., Jørgensen, S. E., et al. (2016). The tempo-spatial variations of phytoplankton diversities and their correlation with trophic state levels in a large eutrophic Chinese lake. Ecological Indicators, 66, 153–162.CrossRefGoogle Scholar
  56. Zhao, H., Wang, S., Jiao, L., Yang, S., & Liu, W. (2013). Characteristics of temporal and spatial distribution of different forms of phosphorus in the sediments of Erhai Lake. Research of Environmental Sciences, 26(3), 227–234.Google Scholar
  57. Zhu, R., Wang, H., Chen, J., Shen, H., & Deng, X. (2018). Use the predictive models to explore the key factors affecting phytoplankton succession in Lake Erhai, China. Environmental Science and Pollution Research, 25(2), 1283–1293.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.State Key Laboratory of Plateau Ecology and AgricultureQinghai UniversityXiningChina

Personalised recommendations