Advertisement

Air quality of an urban school in São Paulo city

  • Daniela Cristina Almeida Pereira
  • Danilo Custódio
  • Maria de Fátima de Andrade
  • Célia Alves
  • Pérola de Castro VasconcellosEmail author
Article
  • 118 Downloads

Abstract

A major campaign was carried out in indoor and outdoor environments in a school located in the university campus of the city of São Paulo. Elements, PAH, oxy-PAH, water-soluble ions and black carbon were determined and compared with preliminary campaigns. The results indicated that the concentrations of particles and organic compounds were higher indoors. Some high molecular weight compounds, attributed to vehicular emissions, were more abundant outdoors. The associated health risk was found to be low. 2-Methylanthraquinone and benzo(a)anthracene-7,12-dione were detected in the indoor samples, denoting the infiltration of vehicle exhaust. The observation of black carbon also corroborates the contribution of traffic emissions. For most of the elements, except for chromium, iron and manganese, the concentrations obtained in indoors were higher than outdoors, mainly due to soil resuspension. Chromium and manganese likely derived from emissions of the vehicle powered by mixtures of ethanol and gasoline. Water-soluble inorganic ions species denoted the influence of soil resuspension and human activities.

Keywords

Indoor pollution PM10 PAH oxy-PAH Inorganic species in air 

Notes

Acknowledgements

The Group on Atmospheric Chemistry Studies thank the support of INCT-Energy and Environment

Funding information

This study is financially supported by CESAM (UID/AMB/50017-POCI-01-0145-FEDER-007638) and FCT/MCTES through national funds (PIDDAC) and co-funded by the FEDER, within the PT2020 Partnership Agreement and Compete 2020.

References

  1. Agudelo-Castañeda, D. M., & Teixeira, E. C. (2014). Seasonal changes, identification and source apportionment of PAH in PM1.0. Atmospheric Environment, 96, 186–200.CrossRefGoogle Scholar
  2. AL (ASSEMBLÉIA LEGISLATIVA DO ESTADO DE SÃO PAULO). (2013). Decreto No. 59.113, de 23 de abril de 2013.Google Scholar
  3. Alam, M. S., Delgado-Saborit, J. M., Stark, C., & Harrison, R. M. (2013). Using atmospheric measurements of PAH and quinine compounds at roadside and urban background sites to assess sources and reactivity. Atmospheric Environment, 77, 24–35.CrossRefGoogle Scholar
  4. Alsmo, T., & Holmberg, S. (2007). Sick buildings or not: indoor air quality and health problems in schools. Indoor Built Environment, 16(6), 548–555.CrossRefGoogle Scholar
  5. Alves, C. A., Vicente, A., Monteiro, C., Gonçalves, C., Evtyugina, M., & Pio, C. (2011). Emission of trace gases and organic components in smoke particles from a wildfire in a mixed-evergreen forest in Portugal. Science of the Total Environment, 409(8), 1466–1475.CrossRefGoogle Scholar
  6. Alves, C. A., Nunes, T., Silva, J., & Duarte, M. (2013). Comfort parameters and particulate matter (PM10 and PM2.5) in school classrooms and outdoor air. Aerosol and Air Quality Research, 13, 1521–1535.CrossRefGoogle Scholar
  7. Alves, C., Calvo, A. I., Marques, L., Castro, A., Nunes, T., Coz, E., & Fraile, R. (2014). Particulate matter in the indoor and outdoor air of a gymnasium and a fronton. Environmental Science and Pollution Research, 21(21), 12390–12402.CrossRefGoogle Scholar
  8. Andrade, M. F., Kumar, P., De Freitas, E. D., Ynoue, R. Y., Martins, J., Martins, L. D., Nogueira, T., Perez-Martinez, P., Miranda, R. M., Albuquerque, T., Gonçalves, F. L. T., Oyama, B., & Zhang, Y. (2017). Air quality in the megacity of São Paulo: evolution over the last 30 years and future perspectives. Atmospheric Environment, 159, 66–82.CrossRefGoogle Scholar
  9. ANVISA (AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA). (2000). Orientação Técnica sobre Padrões Referenciais de Qualidade do Ar Interior, em ambientes climatizados artificialmente de uso público e coletivo. In Resolução n. 176, de 24 de outubro de 2000.Google Scholar
  10. Baird, C. (2002). Química Ambiental. Tradução por: Maria Angeles Lobo Recio e Luiz Carlos Marques Carrera (2nd ed.). Porto Alegre: Bookman 2002.Google Scholar
  11. Bates, C. V. (1999). The effects of air pollution on children. Environmental Health Perspectives, 103, 49–53.Google Scholar
  12. Bolton, J. L., Trush, M. A., Penning, T. M., Dryhurst, G., & Monks, T. J. (2000). Role of quinones in toxicology. Chemical Research in Toxicology, 13(3), 135–160.CrossRefGoogle Scholar
  13. Bonotto, D. M., Jiménez-Rueda, J. R., Fagundes, I. C., & Filho, C. R. A. F. (2007). Weathering processes and dating of soil profiles from São Paulo State, Brazil, by U-isotopes disequilibria. Applied Radiation and Isotopes, 119, 6–15.CrossRefGoogle Scholar
  14. Bougiatioti, A., Zarmpas, P., Koulouri, E., Antoniou, M., Theodosi, C., Kouvarakis, G., Saarikoski, S., Mäkelä, T., Hillamo, R., & Mihalopoulos, N. (2013). Organic, elemental and water-soluble organic carbon in size segregated aerosols, in the marine boundary layer of the Eastern Mediterranean. Atmospheric Environment, 64, 251–262.CrossRefGoogle Scholar
  15. Brito, J., Rizzo, L. V., Herckes, P., Vasconcellos, P. C., Caumo, S. E. S., Fornaro, A., Ynoue, R. Y., Artaxo, P., & Andrade, M. F. (2013). Physical-chemical characterisation of the particulate matter inside two road tunnels in the São Paulo Metropolitan Area. Atmospheric Chemistry and Physics, 13, 12199–12213.CrossRefGoogle Scholar
  16. Callén, M. S., López, J. M., & Mastral, A. M. (2013). Influence of organic and inorganic markers in the source apportionment of airborne PM10 in Zaragoza (Spain) by two receptor models. Environmental Science and Pollution Research, 20(5), 3240–3251.CrossRefGoogle Scholar
  17. Callén, M. S., Iturmendi, A., & López, J. M. (2014). Source apportionment of PM2.5-bound polycyclic aromatic hydrocarbons by a PMF receptor model. Assessment of potential risk for human health. Environmental Pollution, 195, 167–177.CrossRefGoogle Scholar
  18. Calvo, A. I., Alves, C., Castro, A., Pont, V., Vicente, A. M., & Fraile, R. (2013). Research on aerosol sources and chemical composition: Past, current and emerging issues. Atmospheric Research, 120-121, 1–28.CrossRefGoogle Scholar
  19. Castanho, A. D. A., & Artaxo, P. (2001). Wintertime and summertime São Paulo aerosol source apportionment study. Atmospheric Environment, 35(29), 4889–4902.CrossRefGoogle Scholar
  20. Caumo, S., Vicente, A., Custódio, D., Alves, C., & Vasconcellos, P. (2018). Organic compounds in particulate and gaseous phase collected in the neighbourhood of an industrial complex in São Paulo (Brazil). Air Quality, Atmosphere & Health, 11(3), 271–283.CrossRefGoogle Scholar
  21. CDC (CENTERS FOR DISEASE CONTROL AND PREVENTION). (2017). Indoor Ambiental Quality. Available: <http://www.cdc.gov/niosh/topics/indoorenv/. Accessed 18 July 2018.
  22. Cincinelli, A., Del Bubba, M., Martellini, T., Gambaro, A., & Lepri, L. (2007). Gas-particle concentration and distribution of n-alkanes and polycyclic aromatic hydrocarbons in the atmosphere of Prato (Italy). Chemosphere, 68(3), 472–478.CrossRefGoogle Scholar
  23. Crilley, L. R. et al. (2012). Preliminary results on the chemical composition of outdoor airborne particles at urban schools and possible implications for the air quality in classrooms, 2012. https://eprints.qut.edu.au/54369/. Accessed 18 January 2018.
  24. Cruz, A. M. J., Sarmento, S., Almeida, S. M., Silva, A. V., Alves, C., Freitas, M. C., & Wolterbeek, H. (2015). Association between atmospheric pollutants and hospital admissions in Lisbon. Environmental Science and Pollution Research, 22(7), 5500–5510.CrossRefGoogle Scholar
  25. Custódio, D., Pinho, I., Cerqueira, M., Nunes, T., & Pio, C. (2014). Indoor and outdoor suspended particulate matter and associated carbonaceous species at residential homes in northwestern Portugal. Science of the Total Environment, 473, 72–76.CrossRefGoogle Scholar
  26. Custódio, D., Cerqueira, M., Alves, C., Nunes, T., Pio, C., Esteves, V., Frosini, D., Lucarelli, F., & Querol, X. (2016). A one-year record of carbonaceous components and major ions in aerosols from an urban kerbside location in Oporto, Portugal. Science of the Total Environment, 562, 822–833.CrossRefGoogle Scholar
  27. De Oliveira Alves, N., Brito, J., Caumo, S., Arana, A., Hacon, S. S., Artaxo, P., Hillamo, R., Teinilä, K., Medeiros, S. R. B., & Vasconcellos, P. C. (2015). Biomass burning in the Amazon region: aerosol source apportionment and associated health risk assessment. Atmospheric Environment, 120, 277–285.CrossRefGoogle Scholar
  28. Dickhut, R. M., Canuel, E. A., Gustafson, K. E., Liu, K., Arzayus, K., Walker, S. E., Edgecombe, G., Gaylor, M. O., & MacDonald, E. H. (2000). Automotive sources of carcinogenic Polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay Region. Environmental Science & Technology, 34(21), 4635–4640.CrossRefGoogle Scholar
  29. Durant, J. L., Busby Jr., W. F., Lafleur, A. L., Penman, B. W., & Crespi, C. L. (1996). Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutation Research, 371(3-4), 123–157.CrossRefGoogle Scholar
  30. EPA (ENVIRONMENTAL PROTECTION AGENCY). (2016). https://www3.epa.gov/ttn/naaqs/standards/pm/s_pm_history.html. Accessed 17 February 2018.
  31. EPA (EnvironmentaL Protection Agency) (2017). Indoor air quality (IAQ). https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality. Accessed 10 September 2018.Google Scholar
  32. Finlayson-Pitts, B. J., & Pitts Junior. (2000). Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. 1 ed. San Diego: Academic Press.Google Scholar
  33. Fontenele, A. P. G., Pedrotti, J. J., & Fornaro, A. (2009). Avaliação de metais traços e íons majoritários em águas de chuvas na cidade de São Paulo. Química Nova, 32(4), 839–844.CrossRefGoogle Scholar
  34. Freitas, M. C., Dionisio, I., Beasley, D. G., Almeida, S. M., Dung, H. M., Repolho, C., Pacheco, A. M. G., Caseiro, A., Pio, C. A., & Alves, C. (2009). Association between monthly-reported rhinitis by children from basic schools and monthly-averaged air pollutants, at Lisbon (Portugal). Journal of Radioanalytical and Nuclear Chemistry, 282(1), 15–20.CrossRefGoogle Scholar
  35. Gori, G., Carrieri, M., Scapellato, M. L., Parvoli, G., Ferrara, D., Rella, R., Sturaro, A., Bartolucci, G. B. (2009) 2-Methylanthraquinone as a marker of occupational exposure to teak wood dust in boatyards. The Annals of Occupational Hygiene, 53(1), 27-32Google Scholar
  36. Hetem, I. G., & Andrade, M. F. (2016). Characterization of fine particulate matter emitted from the resuspension of road and pavement dust in metropolitan area of São Paulo, Brazil. Atmosphere, 31(7), 1–10.Google Scholar
  37. IARC (International Agency for Research on Cancer). (2012). IARC monographs on the evaluation of carcinogenic risks to humans Volume, 101 https://monographs.iarc.fr/ENG/Monographs/vol101/mono101.pdf. Accessed 05 December 2017.
  38. IBGE (Brazilian Institute of Geography and Statistics). (2017). https://cidades.ibge.gov.br/brasil/sp/sao-paulo/panorama. Accessed 17 April 2018.
  39. ISS (Instituto Saúde e Sustentabilidade). (2013). Avaliação do impacto da poluição atmosférica no Estado de SP sob a visão da saúde. http://www.saudeesustentabilidade.org.br/site/wp-content/uploads/2013/09/Documentofinaldapesquisapadrao_2409-FINAL-sitev1.pdf. Accessed 08 January 2018.
  40. Janssen, N., Hoek, G., Brunekreef, B., & Harssema, H. (1999). Mass concentration and elemental composition of PM10 in classroom. Occupational and Environmental Medicine, 56(7), 482–487.CrossRefGoogle Scholar
  41. Karavalakis, G., Fontaras, G., Ampatzoglou, D., Kousoulidou, M., Stournas, S., Samaras, Z., & Bakeas, E. (2010). Effects of low concentration biodiesel blends application on modern passenger cars. Part 3: Impact on PAH, nitro-PAH, and oxy-PAH emissions. Environmental Pollution, 158(5), 1584–1594.CrossRefGoogle Scholar
  42. König, J., Balfanz, E., Funcke, W., & Romanowski, T. (1983). Determination of oxygenated polycyclic aromatic hydrocarbons in airborne particulate matter by capillary gas chromatography and gas chromatography/mass spectrometry. Analytical Chemistry, 55(4), 599–603.CrossRefGoogle Scholar
  43. Kundu, S., Kawamura, K., Andreae, T. W., Hoffer, A., & Andreae, M. O. (2010). Diurnal variation in the water-soluble inorganic ions, organic carbon and isotopic compositions of total carbon and nitrogen in biomass burning aerosols from the LBA-SMOCC campaign in Rondônia, Brazil. Journal of Aerosol Science, 41(1), 118–133.CrossRefGoogle Scholar
  44. Leal, T. F. M., Fontenele, A. P. G., Pedrotti, J. J., & Fornaro, A. (2004). Composição iônica majoritária de águas de chuva no centro da cidade de São Paulo. Química Nova, 27(6), 855–861.CrossRefGoogle Scholar
  45. Li, C. K., & Kamens, R. M. (1993). The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling. Atmospheric Environment, 27(4), 523–532.CrossRefGoogle Scholar
  46. Lundstedt, S., White, P. A., Lemieux, C. L., Lynes, K. D., Lambert, I. B., Oberg, L., Haglund, P., & Tysklind, M. (2007). Sources, fate and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-Contaminated Sites. Ambio, 36(6), 475–485.CrossRefGoogle Scholar
  47. Manahan, S. (2000). Ambiental Chemistry (7th ed.). New York: CRC Press.Google Scholar
  48. Masclet, P., Mouvier, G., & Nikolaou, K. (1986). Relative decay index and sources of polycyclic aromatic hydrocarbons. Atmospheric Environment, 20(3), 439–446.CrossRefGoogle Scholar
  49. Mendell, M. J., & Heath, G. A. (2005). Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air, 15(1), 27–52.CrossRefGoogle Scholar
  50. Miranda, R. M., Andrade, M. F., Fornaro, A., Astolfo, R., André, P. A., & Saldiva, P. (2012). Urban air pollution: arepresentative survey of PM2.5 mass concentrations in six Brazilian cities. Air Quality, Atmosphere and Health, 5(1), 63–77.CrossRefGoogle Scholar
  51. Mirante, F., Salvador, P., Pio, C., Alves, C., Artiñano, B., Caseiro, A., & Revuelta, A. (2014). Size fractionated aerosol composition at roadside and background ambient in the Madrid urban atmosphere. Atmospheric research, 138, 278–292.CrossRefGoogle Scholar
  52. Mkoma, S., Rocha, G. O., Domingos, J. S. S., Santos, J. V. S., Cardoso, M. P., Silva, R. L., & Andrade, J. B. (2014). Atmospheric particle dry deposition of major ions to the South Atlantic coastal area observed at Baía de Todos os Santos, Brazil. Anais da Academia Brasileira de Ciências, 86(1), 37–55.CrossRefGoogle Scholar
  53. Nisbet, I. C. T., & Lagoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(1), 290–300.CrossRefGoogle Scholar
  54. Okona-Mensah, K. B., Battershill, J., Boobis, A., & Fielder, R. (2005). An approach to investigating the importance of high potency polycyclic aromatic hydrocarbons (PAHs) in the induction of lung cancer by air pollution. Food and Chemical Toxicology, 43(7), 1103–1116.CrossRefGoogle Scholar
  55. Oliveira, C., Martins, N., Tavares, J., Pio, C., Cerqueira, M., Matos, M., Silva, H., Oliveira, C., & Camões, F. (2011). Size distribution of polycyclic aromatic hydrocarbons in a roadway tunnel in Lisbon, Portugal. Chemosphere, 83(11), 1588–1596.CrossRefGoogle Scholar
  56. Oliveira, M., Slezakova, K., Delerue-Matos, C., Pereira, M. C., & Morais, S. (2016). Assessment of polycyclic aromatic hydrocarbons in indoor and outdoor air of preschool ambient (3-5 years old children). Environmental Pollution, 208, 382–394.CrossRefGoogle Scholar
  57. Pablo-Romero, M. P., Román, R., Limón, J. M., & Praena-Crespo, M. (2015). Effects of fine particles on children’s hospital admissions for respiratory health in Seville, Spain. Journal of the Air & Waste Management Association, 65(4), 436–444.CrossRefGoogle Scholar
  58. Pegas, P. N., Nunes, T., Alves, C. A., Silva, J. R., Vieira, S. L. A., Caseiro, A., & Pio, C. A. (2012). Indoor and outdoor characterisation of organic and inorganic compounds in city centre and suburban elementary schools of Aveiro, Portugal. Atmospheric Environment, 55, 80–89.CrossRefGoogle Scholar
  59. Pereira, P. A. P., Lopes, W. A., Carvalho, L. S., Da Rocha, G. O., Bahia, N. C., Loyola, J., Quiterio, S. L., Escaleira, V., Arbilla, G., & Andrade, J. B. (2007). Atmospheric concentrations and dry deposition fluxes of particulate trace metals in Salvador, Bahia, Brazil. Atmospheric Environment, 41(36), 7837–7850.CrossRefGoogle Scholar
  60. Pereira, G. M., De Oliveira Alves, N. O., Caumo, S. E. S., Soares, S., Teinilä, K., Custódio, D., Hillamo, R., Alves, C., & Vasconcellos, P. C. (2017a). Chemical composition of aerosol in São Paulo, Brazil: influence of the transport of the pollutants. Air Quality, Atmosphere and Health, 10(4), 457–468.CrossRefGoogle Scholar
  61. Pereira, G. M., Teinilä, K., Custódio, D., Santos, A. G., Xian, H., Hillamo, R., Alves, C. A., Andrade, J. B., Da Rocha, G. O., Kumar, P., Balasubramanian, R., Andrade, M. F., & Vasconcellos, P. C. (2017b). Particulate pollutants in the Brazilian city of São Paulo: 1-year investigation for the chemical composition and source apportionment. Atmospheric Chemistry and Physics, 17, 11943–11969.CrossRefGoogle Scholar
  62. QUALAR (SISTEMA DE INFORMAÇÕES DA QUALIDADE DO AR). (2017). http://qualar.cetesb.sp.gov.br/qualar/relValoresDiarios.do?method = gerarRelatorio. Accessed 22 March 2017.
  63. Ravindra, K., Socki, R., & Grieken, R. V. (2008). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment, 42, 2895–2921.CrossRefGoogle Scholar
  64. Rengarajan, R., Sudheer, A. K., & Sarin, M. M. (2011). Wintertime PM2,5 and PM10 carbonaceous and inorganic constituents from urban site in western India. Atmospheric Research, 102(4), 420–431.CrossRefGoogle Scholar
  65. Schlemitz, S., & Pfannhauser, W. (1997). Supercritical fluid extraction of mononitrated polycyclic aromatic hydrocarbons from tea- correlation with the PAH concentration. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 205(4), 305–310.CrossRefGoogle Scholar
  66. Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric Chemistry and Physics From Air Pollution to Climate Change. 2 ed. New Jersey: John Wiley & Sons, Inc.Google Scholar
  67. Silva, M. F., et al. (2010). Characterization of metal and trace element contents of particulate matter (PM10) emitted by vehicles running on Brazilian fuels- hydrated ethanol and gasoline with 22% of anhydrous ethanol. Journal of Toxicology and Environmental Health, Part A, 73(13-14), 901–909.CrossRefGoogle Scholar
  68. Singh, P., Jain, S., & Bhargava, S. (1989). A 1,4-Anthraquinone derivative from Tectona Grandis. Phytochemistry, 28(4), 1258–1259.CrossRefGoogle Scholar
  69. Souza, D. Z., Vasconcellos, P. C., Lee, H., Aurela, M., Saarnio, K., Teinilä, K., & Hillamo, R. (2014). Composition of PM2.5 and PM10 collected at urban sites in Brazil. Aerosol and Air Quality Research, 14, 168–176.CrossRefGoogle Scholar
  70. Tobiszewski, M., & Namiesnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119.CrossRefGoogle Scholar
  71. Vasconcellos, P. C., Souza, D. Z., Sanchez-Ccoyllo, O., Bustillos, J. O., Lee, H., Santos, F. C., Nascimento, K. H., Araújo, M. P., Saarnio, K., Teinilä, K., & Hillamo, R. (2010). Determination of anthropogenic and biogenic compounds on atmospheric aerosol collected in urban, biomass burning and forest areas in São Paulo, Brazil. Science of the Total Environment, 408(23), 5836–5844.CrossRefGoogle Scholar
  72. Vasconcellos, P. C., Souza, D. Z., Ávila, S. G., Araújo, M. P., Naoto, E., Nascimento, K. H., Cavalcante, F. S., Dos Santos, M., Smichowski, P., & Behrentz, E. (2011). Comparative study of the atmospheric chemical composition of three South American cities. Atmospheric Environment, 45(32), 5770–5777.CrossRefGoogle Scholar
  73. Vieira-Filho, M., Pedrotti, J. J., & Fornaro, A. (2016). Water-soluble ions species of size-resolved aerosols: implications for the atmospheric acidity in São Paulo megacity, Brazil. Atmospheric Research, 181, 281–287.CrossRefGoogle Scholar
  74. Walgraeve, C., Demeestere, K., Dewulf, J., Zimmermann, & Van Langenhove, H. (2010). Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: molecular characterization and occurrence. Atmospheric Environment, 44(15), 1831–1846.CrossRefGoogle Scholar
  75. Wang, M. Y., Yang, L., & Tu, Y. Y. (2006). Studies on the chemical constituents from stem of Chiritalonggangensis var. Homgyao. Zhongguo Zhong Yao ZaZhi, 31, 307–308.Google Scholar
  76. Wei, S., Huang, B., Liu, M., Bi, X., Ren, Z., Sheng, G., & Fu, J. (2012). Characterization of PM2.5-bound nitrated and oxygenated PAHs in two industrial sites of South China. Atmospheric Research, 109-110, 76–83.CrossRefGoogle Scholar
  77. WHO (World Health Organization). (2000). Air quality guidelines for Europe (second edition). http://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf. Accessed 25 September 2017.
  78. WHO (World Health Organization). (2006). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. http://apps.who.int/iris/bitstream/10665/69477/1/WHO_SDE_PHE_OEH_06.02_eng.pdf. Accessed 03 February 2017.
  79. WHO (World Health Organization). (2010). WHO guidelines for indoor air quality- selected pollutants. http://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf. Accessed 13 February 2017.Google Scholar
  80. WHO (World Health Organization). (2012). Health effects of black carbon. http://www.euro.who.int/__data/assets/pdf_file/0004/162535/e96541.pdf. Accessed 06 December 2017.
  81. WHO (World Health Organization). (2014a). Burden of disease from household air pollution for 2012. http://www.who.int/phe/health_topics/outdoorair/databases/FINAL_HAP_AAP_BoD_24March2014.pdf. Accessed 04 September 2018.
  82. WHO (World Health Organization). (2014b). 7 million premature deaths annually linked to air pollution. http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/. Accessed 02 September 2018.
  83. Yu, H. (2002). Ambiental carcinogenic polycyclic aromatic hydrocarbons: photochemistry and phototoxicity. Journal of Environmental Science and Health Part C Ambiental Carcinogenesis & Ecotoxicology Reviews, 20(2), 149–183.CrossRefGoogle Scholar
  84. Yunker, M. B., MacDonald, R. W., Vingarzan, R., Mitchell, R. H., Goyete, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489–515.CrossRefGoogle Scholar
  85. Zhang, W., Zhang, S., Wan, C., Yue, D., Ye, Y., & Wang, X. (2008). Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy through fall. Environmental Pollution, 153(3), 594–601.CrossRefGoogle Scholar
  86. Zhao, Y., & Gao, Y. (2008). Acidic species and chloride depletion in coarse aerosol particles in the US east coast. Science of the Total Environment, 407(1), 541–547.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniela Cristina Almeida Pereira
    • 1
  • Danilo Custódio
    • 1
  • Maria de Fátima de Andrade
    • 2
  • Célia Alves
    • 3
  • Pérola de Castro Vasconcellos
    • 1
    Email author
  1. 1.Instituto de Química, Universidade de São PauloSão PauloBrazil
  2. 2.Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências AtmosféricasUniversidade de São PauloSão PauloBrazil
  3. 3.Centro de Estudos do Ambiente e do Mar (CESAM), Departamento de AmbienteUniversidade de AveiroAveiroPortugal

Personalised recommendations