Assessment of mining impacts on environment in Muğla-Aydın (SW Turkey) using Landsat and Google Earth imagery

  • Murat GülEmail author
  • Kemal Zorlu
  • Muratcan Gül


Mining activities are important for the country’s economy, but they cause serious threats to the environment. The geology of SW Turkey comprises Southern (Çine) Submassif of Menderes Metamorphic Massif and the Lycian Nappes. These geological units are unconformably overlain by lignite-bearing Miocene deposits, Upper Miocene–Pliocene conglomerates and Quaternary alluvial deposits. The aim of this study is to determine the geospatial change of mining activities in the Muğla-Aydın provinces, SW Turkey. For this purpose, Landsat-5 TM, Landsat-7 ETM, Landsat-8 OLI and Google Earth satellite image data for 1984, 1994, 2004, 2014 and 2018 have been used for change detection analysis. In 1984, only a Miocene lignite quarry was excavated. Then, in 1994, operations for the excavation of feldspar–quartz and marble quarries were started, and from 2004 to 2014, mining activities significantly accelerated. An aerial image of 2018 shows that an area of about 3800 ha has been exploited by mining at 149 quarries. Considering access roads to quarries, plants and dam reservoirs, the human impact extends over 3800 ha. The study area is home to several archaeological sites and endemic biota. Thus, there is an urgent need for the relocation and protection of archaeological heritages and endemic biota by creating special zones. Additionally, the rich geomorphologic features in the study area that require millions of years to form are at risk of totally disappearing.


Change detection Landsat Geomorphological formation Environmental conservation Muğla-Aydın SW Turkey 



The authors thank to anonymous reviewers and editors for their valuable contribution for increasing the scientific quality of the paper. The authors thank to Dr. Iliya Bauchi Danladi and Dr. Erhan Akça for their editorial help.


  1. Alkanoğlu, E. (1984). Menderes masifindeki tafoniler. Yeryuvarı ve İnsan, 8-4, 11–13 (in Turkish).Google Scholar
  2. Altun, N. E. (2014). Assessment of marble waste utilization as an alternative sorbent to limestone for SO2 control. Fuel Processing Technology, 128, 461–470.CrossRefGoogle Scholar
  3. Atalay, Z. (1980). Muğla-Yatağan ve yakın dolayı karasal Neojen’inin stratigrafi araştırması. Türkiye Jeoloji Kurumu Bülteni, 23, 93–99 (in Turkish with English abstract).Google Scholar
  4. Baba, A. (2001). Yatağan (Muğla) Termik Santralı Atık Depolama Sahasının Yeraltı Sularına Etkisi. Jeoloji Mühendisliği Dergisi, 25-2, 1–19 (in Turkish with English abstract).Google Scholar
  5. Baba, A. (2003). Geochemical assessment of environmental effects of ash from Yatagan (Mugla- Turkey) thermal power plant. Water, Air, & Soil Pollution, 144, 3–18.CrossRefGoogle Scholar
  6. Baba, A., Kaya, A., & Birsoy, Y. (2003). The effect of Yatagan thermal power plant (Mugla–Turkey) on the quality of surface and ground waters. Water, Air, & Soil Pollution, 149, 93–111.CrossRefGoogle Scholar
  7. Bağcı, M. (2006). Kozağaç-Kalınağıl (Muğla) Mermerlerinin Jeolojisi, Teknik Analizi ve Maden EkonomisiAçısından Değerlendirilmesi. PhD Thesis, Süleyman Demirel University, Physical and Applied Science Institute, Isparta, 241 p (unpublished).Google Scholar
  8. Belward, A. S., & Skøien, J. O. (2015). Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 115–128.CrossRefGoogle Scholar
  9. Bilgin, Ö., & Koç, E. (2013). Mermer Madenciliğinde Çevresel Etkiler (Environmental Impacts in Marble Mining). Madencilik Türkiye, 68–79 (in Turkish).Google Scholar
  10. Bochenek, Z., Ciolkosz, A., & Iracka, M. (1997). Deterioration of forests in the Sudety mountains, Poland, detected on satellite images. Environmental Pollution, 98(3), 375–379.CrossRefGoogle Scholar
  11. Boengiu, S., Ionuş, O., & Marinescu, E. (2016). Man-made changes of the relief due to the mining activities within Husnicioara open pit (Mehedinţi County, Romania). International Conference – Environment at a Crossroads: SMART approaches for a sustainable Future. Procedia Environmental Sciences, 32, 256–263.CrossRefGoogle Scholar
  12. Bozkurt, E. (2004). Granitoid rocks of the southern Menderes Massif (southwestern Turkey): field evidence for Tertiary magmatism in an extensional shear zone. International Journal of Earth Sciences, 93, 52–71.CrossRefGoogle Scholar
  13. Bozkurt, E., & Oberhansli, R. (2001). Menderes Massif (western Turkey): structural, metamorphic and magmatic evolution—a synthesis. International Journal of Earth Sciences, 89, 679–882.CrossRefGoogle Scholar
  14. Bozkurt, E., & Satır, M. (2000). New Rb-Sr geochronology from southern Menderes Massif (southwestern Turkey) and its tectonic signifance. Geological Journal, 35, 285–296.CrossRefGoogle Scholar
  15. Bozkurt, E., Winchester, J. A., & Park, R. G. (1995). Geochemistry and tectonic significance of augen gneisses from the southern Menderes Massif (West Turkey). Geological Magazine, 132, 287–301.CrossRefGoogle Scholar
  16. Bozkurt, E., Ruffet, G., & Crowley, Q. G. (2015). Güney Menderes Masifi’nde Sinorojenik Eosen Lökogranit Magmatizması ve Tektonik Önemiv (Synorogenic Eocene Leucogranite Magmatism In The Southern Menderes Massif And Its Tectonic Significance). 68. Türkiye Jeoloji Kurultayı Bildiri Özleri kitabı (Proceedings of 68th Turkish Geologic Congress), 06-10 Nisan 2015 MTA-Ankara-Turkey, 50-51 (in Turkish with English abstract)Google Scholar
  17. Candan, O., Dora, Ö., Oberhansli, R., Çetinkaplan, M., Partzsch, J. H., Warkus, F. C., & Dürr, S. (2001). Pan-African high-pressure metamorphism in the Precambrian basement of the Menderes Massif, western Anatolia, Turkey. International Journal of Earth Sciences, 89, 793–811.CrossRefGoogle Scholar
  18. Charou, E., Stefouli, M., Dimitrakopoulos, D., Vasiliou, E., & Mavrantza, O. D. (2010). Using remote sensing to assess impact of mining activities on land and water resources. Mine Water and the Environment, 29, 45–52. Scholar
  19. Chen, J., Li, K., Chang, K. J., Sofia, G., & Tarolli, P. (2015). Open-pit mining geomorphic feature characterisation. International Journal of Applied Earth Observation and Geoinformation, 42, 76–86.CrossRefGoogle Scholar
  20. Chevrel, S., Kuosmannen, V., Belocky, R., Marsh, S., Tapani, T., Mollat, H., et al. (2001). Hyperspectral airborne imagery for mapping mining related contaminated areas in various European environments—first results of MINEO project. In 5th international airborne remote sensing conference, San Francisco, California, 17th–20th September.
  21. Doğaner, S. (2017). Ege Bölgesi Coğrafyası (Aegean Region Geography). İstanbul University Geography Department, Lecture notes 83 p (in Turkish).
  22. Erdoğan, B., & Güngör, T. (2004). The problem of the core–cover boundary of the Menderes Massif and an emplacement mechanism for regionally extensive gneissic granites, Western Anatolia (Turkey). Turkish Journal of Earth Sciences, 13, 15–36.Google Scholar
  23. Erdoğan, B., Akay, E., & Hasözbek, A. (2011). Menderes Masifindeki (Batı Anadolu) Gnaysik Granitlerin Yerleşim Özellikler, ve Masifin Tektonik Evrimdeki Yeri; Yeni Arazi Bulguları ve Yaş Tayinleri. MTA Dergisi (Bulletin of The Mineral Research and Exploration), 142, 167–193 (in Turkish with English abstract).Google Scholar
  24. Espitia-Pérez, L., Arteaga-Pertuz, M., Soto, J. S., Espitia-Pérez, P., Salcedo-Arteaga, S., Pastor-Sierra, K., et al. (2018). Geospatial analysis of residential proximity to open-pit coal mining areas in relation to micronuclei frequency, particulate matter concentration, and elemental enrichment factors. Chemosphere, 206, 203–216.CrossRefGoogle Scholar
  25. Fensholt, R., & Sandholt, I. (2003). Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in a semiarid environment. Remote Sensing of Environment, 87(1), 111–121. Scholar
  26. Garai, D., & Narayana, A. C. (2018). Land use/land cover changes in the mining area of Godavari coal fields of southern India. The Egyptian Journal of Remote Sensing and Space Sciences, 21(2018), 375–381.CrossRefGoogle Scholar
  27. Görür, N., Şengör, A. M. C., Sakınç, M., Tüysüz, O., Akkük, R., Yiğitbaş, E., et al. (1995). Rift formation in the Gökova region, southwest Anatolia: implications for the opening of the Aegean Sea. Geological Magazine, 132, 637–650.CrossRefGoogle Scholar
  28. Gül, M. (2015). Lithological properties and environmental importance of the quaternary colluviums (Mugla, SW Turkey). Environment and Earth Science, 74, 4089–4108. Scholar
  29. Gül, M. (2015a). Mermer Artıkları, Atık mı, Ekonomik Değer mi? (Marble Residues, Waste, Economic Value) (Derleme-Görüş). Muğla Mermer (Muğla Mermerciler Derneği Sektörel Yayın Organı), 7-27, 20–23 (in Turkish).Google Scholar
  30. Gül, M., & Uslular, G. (2014). Weathering and geomorphological features of metamorphosed Granitoids (Çine Submassif-Menderes metamorphic Massif, W Turkey). In: Proceedings of Eighth International Symposium on the Eastern Mediterranean Geology, 13-17 October 2014 (p. 129). Muğla Sıtkı Koçman University Muğla-Turkey (poster).Google Scholar
  31. Gül, M., & Uslular, G. (2015). Metamorfize Granitoyidlerde Gözlenen Jeomorfolojik Oluşumlar (Çine Asmasifi-Menderes Metamorfik Masifi) (pp. 570–571). Ankara: Proceedings of 68th Turkish Geologic Congress (in Turkish with English abstract).Google Scholar
  32. Gül, M., & Uslular, G. (2016). Geomorphological features and weathering of the Cine metamorphic Submassif (SW Turkey). Arabian Journal of Geosicences, 9-16(682), 1–16. Scholar
  33. Gül, M., & Uslular, G. (2017). Çine (Aydın) – Yatağan (Muğla) Arası Menderes Masifi’nde Gözlenen Jeomorfolojik Yapılar (Geomorphologic Structures observed in Menderes Massif in between Çine (Aydın)-Yatağan (Muğla)). Mavi Gezegen, 22-2, 38–47 (in Turkish).Google Scholar
  34. Güler, T., & Polat, E. (2018). Mermer çamuru karakterizasyonu ve potansiyel kullanım alanları. In: Güler, T., Polat, E. (Eds) Mermer madenciliğinde çevresel yaklaşımlar. Muğla Büyükşehir Belediyesi Kültür Yayınları, 6. Akademik Yayınlar Dizisi, 1, 205–218 (in Turkish).Google Scholar
  35. Güney, A., & Gül, M. (2018). Analysis of surface subsidence due to longwall mining under weak geological conditions: Turgut basin of Yatağan-Muğla (Turkey) case study. International Journal of Mining, Reclamation and Environment, 33–7, 445–461. Scholar
  36. Güngör, Y. (2012). Turizmde Yükselen Eğilim: Jeoturizm (Rising Trend in Tourism: Geotourism). TMMOB Jeoloji Mühendisleri Odası (TMMOB- Turkey Union of Chambers of Engineers and Architects Chamber, Chamber of Geological Engineers) Haber Bülteni (Newsletter), Sayı (Issue): 2012/2 (in Turkish).Google Scholar
  37. Gürer, Ö. F., & Yılmaz, Y. (2002). Geology of the Ören and surrounding regions, SW Turkey. Turkish Journal of Earth Sciences, 11, 2–18.Google Scholar
  38. Kahraman, İ.M., & Körbalta, H. (2017). Bafa Gölü, EGE019. 210-211p, Ege Bölgesi, 247p. (Access date: 22.10.2017).
  39. Karaarslan, E., Demir, Ö. F., & Gül, M. (2017). Madencilik Bölgesindeki Çine Dağları İçin Artırılmış Gerçeklik Tabanlı Jeoturizm Uygulaması, (Augmented Reality Based Geotourism Application for the Çine Mountains in Mining Area). In T. Güler, M. Erdemoğlu, & E. Polat (Eds.), Proceedings Book, International Symposium on Mining and Environment, ISME 2017, 27-29 September 2017, Bodrum, Muğla, Turkey (pp. 1247–1258).Google Scholar
  40. Kayet, N., Pathak, K., Chakrabarty, A., Kumar, S., Chowdary, V. M., Singh, C. P., & Basumatary, S. (2019). Assessment of foliar dust using Hyperion and Landsat satellite imagery for mine environmental monitoring in an open cast iron ore mining areas. Journal of Cleaner Production, 218, 993–1006.CrossRefGoogle Scholar
  41. Kazancı, N., Şaroğlu, F., Doğan, A., & Mülazımoğlu, N. S. (2012). Turkey. In WAP, Smith-Meyer S (eds). Geoheritage in Europe and its conservation. ProGEO project. 405p. pp. 366–378.Google Scholar
  42. Kekovalı, K., & Kalafat, D. (2014). Detecting of mining-quarrying activities in Turkey using satellite imagery and its correlation with daytime to nighttime ratio analysis. Journal of the Indian Society of Remote Sensing, 42(1), 227–232. Scholar
  43. Konak, N., Akdeniz, N., & Öztürk, E. M. (1987). Geology of the south of Menderes massif, correlation of Variscan and pre-Variscan events of the Alpine Mediterrenean Mountain Belt (Guide book for the field excursion along western Anatolia, Turkey) IGCP (International Geological Correlation Programme of UNESCO) Project 5:42–53.Google Scholar
  44. Koralay, O. E., Candan, O., Chen, F., Akal, C., Oberhansli, R., Satır, M., & Dora, O. Ö. (2012). Pan-African magmatism in the Menderes Massif: geochronological data from leuco tourmaline orthogneisses in western Turkey. International Journal of Earth Sciences, 101, 2055–2081.CrossRefGoogle Scholar
  45. Kun, M., Güngör, T., & Erdoğan, B. (1999). Menderes Masifindeki Mermer Yataklarının Stratigrafik Konumları ve özellikleri (pp. 46–53). İzmir: Proceedings of I. Symposium on Western Anatolia Raw Materials (in Turkish with English abstract).Google Scholar
  46. Kuşçu, M. (1992). Kestanecik ve Kozağaç (Yatağan-Muğla) Mermer Yataklarının Jeolojik ve Ekonomik Özellikleri. Jeoloji Mühendisliği (Geological Engineering), 41, 23–36 (in Turkish with English abstract).Google Scholar
  47. Lise, Y. (2017). Batı Menteşe Dağları EGE020. s, 212-213. Ege Bölgesi, 247 s. (Access date: 22.10.2017) (in Turkish).
  48. Lobo, F. D. L., Souza-Filho, P. W. M., Novo, E. M. L. M., Carlos, F. M., & Barbosa, C. C. F. (2018). Mapping mining areas in the Brazilian Amazon using MSI/Sentinel-2 Imagery (2017). Remote Sensing, 10, 1178. Scholar
  49. Ma, L., Li, M., Ma, X., Cheng, L., Du, P., & Liu, Y. (2017). A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 130(2017), 277–293. Scholar
  50. Malaviya, S., Munsi, M., Oinam, G., & Joshi, P. K. (2010). Landscape approach for quantifying land use land cover change (1972–2006) and habitat diversity in a mining area in Central India (Bokaro, Jharkhand). Environmental Monitoring and Assessment, 170(1-4), 215–229.CrossRefGoogle Scholar
  51. Menegaki, M., & Kaliampakos, D. (2006). Landscape analysis as a tool for surface mining design. Environment and Planning. B, Planning & Design, 33, 185–196.CrossRefGoogle Scholar
  52. Menegaki, M., Koutiva, I., & Kaliampakos, D. (2015). Assessing the chromatic contrast in open surface excavations: a comparative study between subjective and quantitative approaches, International Journal of Mining. Reclamation and Environment, 29(2), 112–124. Scholar
  53. Mhlongo, S. E., & Amponsah-Dacosta, F. (2016). A review of problems and solutions of abandoned mines in South Africa, International Journal of Mining. Reclamation and Environment, 30(4), 279–294. Scholar
  54. Moeletsi, R., & Tesfamichael, S. (2018). quantifying land cover changes caused by granite quarries from 1973-2015 using Landsat Data. In Proceedings of the 4th International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM 2018), 196–204.Google Scholar
  55. Mossa, J., & James, L. A. (2013). Impacts of mining on geomorphic systems. In: Shroder J (Editor in chief), James LA, Harden CP, Clague JJ (Eds.), Treatise on Geomorphology, Geomorphology of Human Disturbances, Climate Change, and Natural Hazards, 74–95.Google Scholar
  56. Oğuz, T. (2011). Yatağan Jeopark Projesi. Proceedings of 12nd Paleontoloji ve Stratigrafi Çalıştayı Bildiriler kitabı, (Proceedings of 12nd Palaeontology and Stratigraphy Workshop) 30 September-2 October 2011 Muğla. 29–30.Google Scholar
  57. Okay, A. İ. (2001). Stratigraphic and metamorphic inversions in the central Menderes Massif: a new structural model. International Journal of Earth Sciences, 89, 709–727.CrossRefGoogle Scholar
  58. Özer, S., Sözbilir, H., Özkar, İ., Toker, V., & Sarı, B. (2001). Stratigraphy of Upper Cretaceous-Paleogene sequences in the southern and eastern Menderes Massif (Western Turkey). International Journal of Earth Sciences, 89, 852–866.CrossRefGoogle Scholar
  59. Pericak, A. A., Thomas, C. J., Kroodsma, D. A., Wasson, M. F., Ross, M., Clinton, N. E., Campagna, D. J., et al. (2018). Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine. PLoS One, 13(7), e0197758. Scholar
  60. Rajgor, M. B., Patel, N. C., & Pitroda, J. (2013). A study on marble waste management: opportunities and challenges in current age for making value added bricks. Proceedings of National Conference CRDCE13, 20-21 December 2013. SVIT: Vasad.Google Scholar
  61. Rimmele, G., Jolivet, L., Oberhansli, R., & Goffe, B. (2003). Deformation history of the high-pressure Lycian Nappes and implications for tectonic evolution of SW Turkey. Tectonics, 22, 1007–1027.CrossRefGoogle Scholar
  62. Şengör, A. M. C., & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181–241.CrossRefGoogle Scholar
  63. Şengör, A. M. C., Satır, M., & Akkök, R. (1984). Timing of tectonic events in the Menderes Massif, western Turkey: implications for tectonic evolution and evidence for Pan-African basement in Turkey. Tectonics, 3, 693–707.CrossRefGoogle Scholar
  64. Seyitoğlu, G., & Işık, V. (2015). Batı Anadolu’da Geç Senozoyik Genişleme Tektoniği: Menderes Çekirdek Kompleksinin Yüzeylemesi ve İlişkili Havza Oluşumu. Maden Tetkik ve Arama Dergisi (Bulletin of The Mineral Research and Exploration), 151, 49–109 (in Turkish with English abstract).Google Scholar
  65. Singh, A. (1989). Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6), 989–1003.CrossRefGoogle Scholar
  66. Söğüt, B. (2015). Stratonikeia’nın Yerleşim Tarihi ve Yapılan Çalışmalar. In B. Söğüt (Ed.), Stratonikeia Çalışmaları 1 (pp. 1–8). İstanbul: Stratonikeia ve Çevresi Araştırmaları (in Turkish).Google Scholar
  67. Sunar, F., & Ozkan, C. (2001). Forest fire analysis with remote sensing data. International Journal of Remote Sensing, 22(12), 2265–2278.CrossRefGoogle Scholar
  68. Szczepanska, J., & Twardowska, I. (1999). Distribution and environmental impact of coal-mining wastes in Upper Silesia, Poland. Environmental Geology, 38(3), 249–258.CrossRefGoogle Scholar
  69. Uygun, A., & Gümüşçü, A. (2000). Çine Asmasifi (Gb-Anadolu) Albit Yataklarının Jeolojisi Ve Kökeni. Maden Tetkik ve Arama Dergisi (Bulletin of The Mineral Research and Exploration), 122, 25–32 (in Turkish with English abstract).Google Scholar
  70. Vijdea, A. M., Sommer, S., & Mehl, W. (2004). Use of remote sensing for mapping and evaluation of mining waste anomalies at national to multi-country scale Joint Research Centre of the European Commission, Ispra, EUR 21185 EN., 123.Google Scholar
  71. Whitney, D. L., & Bozkurt, E. (2002). Metamorphic history of the southern Menderes Massif, western Turkey. Geological Society of America Bulletin, 114, 829–838.CrossRefGoogle Scholar
  72. Yavuz, A. B., Türk, N., & Koca, M. Y. (2005). Geological parameters affecting the marble production in quarries along the southern flank of the Menderes Massif, Turkey. Engineering Geology, 80, 214–241.CrossRefGoogle Scholar
  73. Yavuz, A. B., Türk, N., & Koca, M. Y. (2005a). Material properties of the Menderes Massif marbles from SW Turkey. Engineering Geology, 82, 91–106.CrossRefGoogle Scholar
  74. Yu, L., Xu, Y., Xue, Y., Li, X., Cheng, Y., Liu, X., Porwal, A., Holden, E.-J., Yang, J., & Gong, P. (2018). Monitoring surface mining belts using multiple remote sensing datasets: a global perspective. Ore Geology Reviews, 101, 675–687.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Geological EngineeringMuğla Sıtkı Koçman UniversityMuğlaTurkey
  2. 2.Kahta Vocational School, Department of Architecture and City PlanningAdıyaman UniversityAdıyamanTurkey
  3. 3.Yönelt CollegeMuğlaTurkey

Personalised recommendations