Advertisement

Spatial and temporal variation of the vegetation of the semiarid Puna in a pastoral system in the Pozuelos Biosphere Reserve

  • Verónica RojoEmail author
  • Y. Arzamendia
  • C. Pérez
  • J. Baldo
  • B. L. Vilá
Article
  • 135 Downloads

Abstract

This study aimed to analyze the spatial and temporal variation of the vegetation in the northern Argentine Puna, utilizing both field sampling and remote-sensing tools. The study was performed within the Pozuelos Biosphere Reserve (Jujuy province, Argentina), which aims to generate socio-economic development compatible with biodiversity conservation. Our study was designed to analyze the dynamics of the Puna vegetation at local scale and assess and monitor the seasonal (dry and wet seasons), interannual, and spatial variation of the vegetation cover, biomass, dominant species, and vegetation indices. Ten vegetation units (with differences in composition, cover, and high and low stratum biomass) were identified at our study site. The diversity of these vegetation units correlated with geomorphology and soil type. In the dry season, the vegetation unit with greatest vegetation cover and biomass was the Festuca chrysophylla grassland, whereas in the wet season, the units with greatest cover and biomass were vegas (peatlands) and short grasslands. The Festuca chrysophylla grasslands and short grasslands were located in areas with clay soils, except peatlands, associated with valleys and coarse-texture soils. The vegetation indices used (NDVI, SAVI, and MSAVI2) were able to differentiate functional types of vegetation and showed a good statistical fit with cover values. Our results suggest that the integrated utilization of remote-sensing tools and field surveys improves the assessment of the Puna vegetation and would allow a periodic monitoring at production unit scale taking into account its spatial and temporal variation.

Keywords

Puna rangelands South American camelids Spatial distribution Vegetation indices Drylands 

Notes

Acknowledgments

We thank the people of the town of Santa Catalina, Jujuy, Argentina, and the Cooperativa Agroganadera de Santa Catalina (COOPASAC), as well as A. Cachizumba, E. Castro, A. Machado Rosas, N. Núñez, S. Segundo, Y. Toconas, and A. Vilca for their help in the field sampling, and Facultad de Ciencias Agrarias from Universidad Nacional de Jujuy, Argentina, for logistic support at the field. We also thank the team of the VICAM Research Group. Rojo V., Arzamendia Y., Baldo J. and Vilá B. are members of the National Research Council (CONICET) of Argentina.

Funding information

The research was financed by projects of the National Agency for Research (ANPCyT), PICT 0479-2013, PICTO-2018-0041 and SECTER-UNJu (Res.409/14).

References

  1. Aceituno, P. (1996). Elementos del clima en el Altiplano Sudamericano. Revista Geofísica, 44, 37–55.Google Scholar
  2. Arzamendia, Y., & Vilá, B. L. (2015). Vicugna habitat use and interactions with domestic ungulates in Jujuy, Northwest Argentina. Mammalia, 79(3), 267–278.Google Scholar
  3. Alzérreca, H. A., Prieto, G. C., Laura, J. C., Luna, D. C., & Laguna, S. B. (2001). Características y distribución de los bofedales en el ámbito boliviano. Informe final. La Paz: Asociación Integral de Ganaderos en camélidos de los Andes Altos (AIGACAA).Google Scholar
  4. Arzamendia, Y., Cassini, M. H., & Vilá, B. L. (2006). Habitat use by vicuña Vicugna vicugna in Laguna Pozuelos reserve, Jujuy, Argentina. Oryx, 40, 1–6.Google Scholar
  5. Arzamendia, Y., Maidana, R., Vilá, B. L., & Bonacic, C. (2008). Wild vicuñas management in Cieneguillas, Jujuy. In E. Frank, M. Antonini, & O. Toro (Eds.), South American Camelids Research- volume 2 (pp. 139–146). Wageningen: Wageningen Academic Publishers.Google Scholar
  6. Arzamendia, Y., Baldo, J., Rojo, V., Samec, C., Vilá, B. L. (2014). Manejo de vicuñas silvestres en Santa Catalina, Jujuy: investigadores y pobladores en búsqueda de la sustentabilidad y el buen vivir, Cuadernos del Instituto Nacional de Antropología y Pensamiento Latinoamericano - Series Especiales, 2, 1:8–23.Google Scholar
  7. Baldassini, P., Volante, J. N., Califano, L. M., & Paurelo, J. M. (2012). Caracterización regional de la estructura y de la productividad de la vegetación de la Puna mediante el uso de imágenes MODIS. Ecología Austral, 22, 22–32.Google Scholar
  8. Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote Sensing Reviews, 13, 95–120.Google Scholar
  9. Bonaventura, S. M., Tecchi, R., & Vignale, D. (1995). The vegetation of the Puna Belt at Laguna de Pozuelos biosphere reserve in Northwest Argentina. Vegetatio, 119, 23–31.Google Scholar
  10. Borgnia, M., Maggi, A. M., Arriaga, M., Aued, B., Vilá, B. L., & Cassini, M. H. (2006). Caracterización de la vegetación en la Reserva de Biósfera Laguna Blanca (Catamarca, Argentina). Ecología Austral, 16, 29–45.Google Scholar
  11. Bouyoucos, J. (1927). The hydrometer as a new method for the mechanical analysis of soils. Soil Science, 23, 343–352.Google Scholar
  12. Buitrago, L. G. (2000). El Clima de la provincia de Jujuy. San Salvador de Jujuy: Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy.Google Scholar
  13. Buttolph, L. P., & Coppock, D. L. (2013). Influence of deferred grazing and livestock productivity in an Andean livestock system. Journal of Applied Ecology, 41(4), 664–674.Google Scholar
  14. Buzzi, M., Rueter, B., & Ghermandi, L. (2017). Múltiples índices espectrales para predecir la variabilidad de atributos estructurales y funcionales en zonas áridas. Ecología austral, 27(1), 55–62.Google Scholar
  15. Cabrera, A. L. (1957). La vegetación de la Puna Argentina. Revista de Investigaciones Agrícolas, 11, 317–512.Google Scholar
  16. Cabrera, A. L. (1968). Ecología vegetal de la Puna. Colloquium Geographicum, 9, 91–116.Google Scholar
  17. Cabrera, A. L. (1971). Fitogeografía de la república Argentina. Boletín de la Sociedad Argentina de Botánica, 14, 1–42.Google Scholar
  18. Cabrera, A. L. (1976). Regiones fitogeográficas argentinas. In W. F. Kugler (Ed.), Enciclopedia argentina de agricultura y jardinería, 2(1) (pp. 1–85). Acme: Buenos Aires.Google Scholar
  19. Cabrera, A. L., & Willink, A. W. (1983). Biogeografía de América Latina. Monografía N° 13. Washington, DC: OEA, Serie Biológica.Google Scholar
  20. Castañeda, M., & González, A. (1991). La vegetación de la Cuenca de Pozuelos. In J. G. Fernández & R. Tecchi (Eds.), La Reserva de la Biosfera Laguna de Pozuelos. Un ecosistema pastoril en los Andes Centrales (pp. 43–50). Montevideo: UNJu -UNESCO, PER INBIAL.Google Scholar
  21. Catorci, A., Cesaretti, S., Velasquez, J. L., Burrascano, S., & Zeballos, H. (2013). Management type affects composition and facilitative processes in altoandine dry grassland. Acta Oecologica, 52, 19–28.Google Scholar
  22. Caziani, S. M., & Derlindati, E. J. (1999). Humedales altoandinos del noroeste de Argentina: su contribución a la biodiversidad regional. In A. I. Malbares (Ed.), Tópicos sobre Humedales Subtropicales y templados de Sudamérica (pp. 1–15). MAB: Montevideo.Google Scholar
  23. Cendrero, A., Díaz de Terán, J. R., Gonzalez, D., Mascitti, V., Rotondaro, R., & Tecchi, R. (1993). Environmental diagnosis for planning and management in the high Andean region: The biosphere Reserve of Pozuelos, Argentina. Environmental Management, 17, 683–703.Google Scholar
  24. Cooper, D. J., Sueltenfuss, J., Oyague, E., et al. (2019). Drivers of peatland water table dynamics in the Central Andes, Bolivia and Peru. Hydrological Processes, 33, 1913–1925.Google Scholar
  25. Crawley, M. J. (2007). The R book. London: Wiley.Google Scholar
  26. Gaitán, J. J., Bran, D., Oliva, G., Ciari, G., Nakamatsu, V., Salomone, J., Ferrante, D., Buono, G., Massara, V., Humano, G., Celdrán, D., Opazo, W., & Maestre, F. T. (2013). Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes. Ecological Indicators, 34, 181–191.Google Scholar
  27. Genin, D., & Alzerreca, H. (1995). Reseña de la vegetación de la zona de Turco. In D. Genin, H. J. Picht, R. Lizarazu, & T. Rodriguez (Eds.), Waira Pampa. Un sistema pastoril camélidos-ovinos del altiplano árido boliviano. La Paz: ORSTOM, CONPAC, IBTA.Google Scholar
  28. Genin, D., & Alzérreca, H. A. (2006). Campos nativos de pastoreo y producción animal en la puna semiárida y árida andina. Sécheresse, 17, 265–274.Google Scholar
  29. Genin, D., Picht, H. J., Lizarazu, R., & Rodriguez, T. (1995). Waira Pampa. Un sistema pastoril camélidos-ovinos del altiplano árido boliviano. ORSTOM, CONPAC, IBTA: La Paz.Google Scholar
  30. Göbel, B. (2001). El ciclo anual de la producción pastoril en Huancar (Jujuy, Argentina). In G. Mengoni Goñalons, D. Olivera, & H. D. Yacobaccio (Eds.), El uso de los camélidos a través del tiempo (pp. 91–115). GZC/Del Tridente: Buenos Aires.Google Scholar
  31. Goirán, S. B., Aranibar, J. N., & Gomez, M. L. (2012). Heterogeneous spatial distribution of traditional livestock settlements and their effects on vegetation cover in arid groundwater coupled ecosystems in the Monte Desert (Argentina). Journal of Arid Environments, 87, 188–197.Google Scholar
  32. Gould, W. (2000). Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecological Applications, 10, 1861–1870.Google Scholar
  33. Gray, M. (2005). Geodiversity and geoconservation: what, why, and how?. Geodiversity & geoconservation, 22 (3): 4-12Google Scholar
  34. Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295–309.Google Scholar
  35. Jackson, R., & Huete, A. R. (1991). Interpreting vegetation indices. Preventive Veterinary Medicine, 11, 185–200.Google Scholar
  36. Lamas, H. E. (2012). Importancia actual e histórica de la ganadería de altura. In D. Rosinblit (Ed.), Mapa de Desarrollo de Jujuy (pp. 355–418). Ministerio de Economía y Finanzas Públicas: Buenos Aires.Google Scholar
  37. Maggi, A. E., & Ponieman, K. D. (2018). Changes in vegetal cover, precipitations and land degradation in Puna region, Argentina. Modern Environmental Science and Engineering, 4(7), 638–643.Google Scholar
  38. Matteucci, S., & Colma, A. (1982). Metodología para el estudio de la vegetación. Washington, DC: Secretaría General de la Organización de los Estados Americanos.Google Scholar
  39. Mazzarino, M., & Finn, J. T. (2016). An NDVI analysis of vegetation trends in an Andean watershed. Wetlands Ecology and Management, 24, 623–640.Google Scholar
  40. McDonald, J. H. (2014). Handbook of Biological Statistics (3rd ed.). Baltimore: Sparky House Publishing.Google Scholar
  41. Morales, M. S., Christie, D. A., Villalba, R., Argollo, J., Pacajes, J., Silva, J. S., Alvarez, C. A., Llancabure, J. C., & Soliz Gamboa, C. C. (2012). Precipitation changes in the south American Altiplano since 1300 AD reconstructed by tree-rings. Climate of the Past, 8(2), 653–666.Google Scholar
  42. Morello, J., Matteucci, S. D., Rodríguez, A., & Silva, M. (2012). Ecorregiones y complejos ecosistémicos de argentina. Buenos Aires: Orientación Gráfica Editora.Google Scholar
  43. Muñoz, A. E., & Bonacic, C. (2006). Variación estacional de la flora y vegetación en la precordillera andina de la comuna de Putre. Periodo 2002-2003. Gayana Botánica, 63, 75–92.Google Scholar
  44. Muñoz García, M. A., Faz, A., & Zornoza, R. (2013). Carbon stocks and dynamics in grazing highlands from the Andean plateau. Catena, 104, 136–143.Google Scholar
  45. Navarro, G. (1993). Vegetación de Bolivia: el Altiplano meridional. Rivasgodaya, 7, 69–98.Google Scholar
  46. Navone, S. M., Bargiela, M., Maggi, A., & Movia, C. P. (2006). Indicadores biofísicos de desertificación en el noroeste argentino: desarrollo metodológico. In E. M. Abraham & G. Beekman (Eds.), Indicadores de la Desertificación para América del Sur (pp. 103–111). IICA-BID: Mendoza.Google Scholar
  47. Ospina González, J. C., Aliscioni, S. S., & Denham, S. S. (2013). Estudios taxonómicos en el género Festuca L. (Poaceae) de Argentina y Chile. Gayana - Botanica, 70(1), 1–15.Google Scholar
  48. Ospina González, J. C. (2016). New lectotypifications and new synonyms in Festuca (Poaceae, Pooideae, Loliinae) from the Central Andes. Phytotaxa, 247(4), 247–258.Google Scholar
  49. Pauchard, A., & Alaback, P. B. (2004). Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of south-Central Chile. Conservation Biology, 18(1), 238–248.Google Scholar
  50. Paz, R., Sossa Valdez, F., Lamas, H. E., Echazu, F., & Califano, L. (2011). Diversidad, mercantilización y potencial productivo de la Puna jujeña (Argentina). Abra Pampa: Ediciones INTA.Google Scholar
  51. Qi J., Kerr, Y., Chehbouni, A. (1994a). External factor consideration in vegetation index development. In Proceedings of 6th International Symposium on Physical Measurements and Signatures in Remote Sensing. pp 723–730.Google Scholar
  52. Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994b). A modified soil adjusted vegetation index. Remote Sensing of the Environment, 48, 119–126.Google Scholar
  53. Quantum GIS -QGIS- Development Team. (2009). QGIS Geographic Information System. Open Source Geospatial Foundation. http://qgis.org. Accessed 20 Mar 2018.
  54. R Core Team. (2015). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing https://www.R-project.org. Accessed 20 June 2018.
  55. Rojo, V. (2017). Análisis de la dinámica de la vegetación puneña en relación con los ungulados domésticos y silvestres y su impacto sobre la desertificación. PhD Thesis, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Argentina.  https://doi.org/10.35537/10915/62309
  56. Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. In F. C. Stanley, E. P. Mercanti, & M. A. Becker (Eds.), Third Earth resources technology satellite-1 symposium (pp. 309–318). Washington, DC: National Aeronautics and Space Administration (NASA).Google Scholar
  57. Ruthsatz, B. (2012). Vegetation and ecology of the high Andean peatlands of Bolivia. Phytocoenologia, 42, 133–179.Google Scholar
  58. Ruthsatz, B., & Movia, C. (1975). Relevamiento de las estepas andinas del noroeste de la Provincia de Jujuy. Buenos Aires: Fundación para la Educación, la Ciencia y la Cultura.Google Scholar
  59. Sakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J., With, K. A., Baughman, S., Cabin, R. J., Cohen, J. E., Ellstrand, N. C., McCauley, D. E., O'Neil, P., Parker, I. M., Thompson, J. N., & Weller, S. G. (2001). The population biology of invasive species. Annual Review of Ecology and Systematics, 32, 305–332.Google Scholar
  60. Sala, O. E., & Austin, A. T. (2000). Methods of estimating aboveground net primary productivity. In O. E. Sala, R. B. Jackson, H. A. Mooney, & R. H. Howarth (Eds.), Methods in ecosystem science (pp. 31–43). New York: Springer.Google Scholar
  61. Sonnenschein, R., Kuemmerle, T., Udelhoven, T., Stellmes, M., & Hostert, P. (2011). Differences in Landsat-based trend analyses in drylands due to the choice of vegetation estimate. Remote Sensing of Environment, 115(6), 1408–1420.Google Scholar
  62. Squeo, F., Warner, B., Aravena, R., & Espinoza, D. (2006). Bofedales: High altitude peatlands of the Central Andes. Revista Chilena de Historia Natural, 79, 245–255.Google Scholar
  63. Stavi, I., Rachmilevitch, S., & Yizhaq, H. (2018). Small-scale geodiversity regulates functioning, connectivity, and productivity of shrubby, semi-arid rangelands. Land Degradation and Development, 29, 205–209.Google Scholar
  64. Talamo, A., Tolaba, J., Trucco, C., & Acuña, E. (2010). Unidades de vegetación y composición florística en sectores del Altiplano del noroeste de Argentina. I. Ambientes de estepas. Ecología en Bolivia, 45(1), 419.Google Scholar
  65. Tchilinguirian, P., & Olivera, D. E. (2012). Degradación y formación de vegas puneñas (900-150 años AP), Puna Austral (26 S) ¿Respuesta del paisaje al clima o al hombre. Acta Geológica, 24, 41–61.Google Scholar
  66. Thomas, E., Douterlungne, D., Vandebroek, I., Heens, F., Goetghebeur, P., & Van Damme, P. (2011). Human impact on wild firewood species in the Rural Andes community of Apillapampa, Bolivia. Environmental Monitoring and Assessment, 178, 333–347.Google Scholar
  67. Tso, B., & Mather, P. M. (2009). Classification methods for remotely sensed data. Taylor and Francis Goup: CRC Press.Google Scholar
  68. Verón, S. R., & Paruelo, J. M. (2010). Desertification alters the response of vegetation to changes in precipitation. Journal of Applied Ecology, 47(6), 1233–1241.Google Scholar
  69. Vilá, B. L. (2012). Camélidos Sudamericanos. Buenos Aires: EUDEBA.Google Scholar
  70. Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soil-effect of variations in digestion conditions and inorganic soil constituents. Soil Science, 63, 251–263.Google Scholar
  71. Wawrzyk, A. C., & Vilá, B. L. (2013). Dinámica de pastoreo en dos comunidades de la Puna de Jujuy, Argentina: Lagunillas del Farallon y Suripujio. Revista de Antropología Chilena, 45, 349–362.Google Scholar
  72. Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017, 1353691 17 pages.Google Scholar
  73. Yacobaccio, H. D. (2007). Andean camelid herding in the South Andes: Ethnoarchaeological models for archaeozoological research. Anthropozoologica, 2, 143–154.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto de Ecorregiones Andinas (INECOA-CONICET-UNJu)San Salvador de JujuyArgentina
  2. 2.VICAM: Vicuñas, Camélidos y AmbienteBuenos AiresArgentina
  3. 3.Facultad de Ciencias AgrariasUniversidad Nacional de JujuySan Salvador de JujuyArgentina
  4. 4.Laboratorio de Investigación de Sistemas Ecológicos y AmbientalesUniversidad Nacional de La PlataLa PlataArgentina
  5. 5.CONICET: Consejo Nacional de Investigaciones Científicas y Técnicas (National Research Council)Buenos AiresArgentina
  6. 6.Departamento de Ciencias SocialesUniversidad Nacional de LujánBuenos AiresArgentina

Personalised recommendations