Long-term leaching of As, Cd, Mo, Pb, and Zn from coal fly ash in column test

  • C. N. LangeEmail author
  • M. Flues
  • G. Hiromoto
  • M. E. G. Boscov
  • I. M. C. Camargo


Globally, millions of tons of coal fly ash (CFA) are generated per year, and the majority of this material is usually stored in stock piles or landfills, and in a long-term, it can be an environmental hazard if rainwater infiltrates the ashes. Long-term leaching studies of Brazilian ashes are scarce. The purpose of this study was to evaluate arsenic, cadmium, molybdenum, lead, and zinc leaching behavior from a Brazilian CFA by a column experiment designed to simulate field conditions: slightly acid rain considering seasonality of precipitation and temperature for a long-term leaching period (336 days). All elements were leached from CFA, except lead. Elements leaching behavior was influenced by leaching time, leaching volume, and temperature. Higher leachability of As and Cd from CFA during warm and wet season was observed. Results indicate a potential risk to soil and groundwater, since ashes are usually stored in uncovered fields on power plants vicinity.


Brazilian coal fly ash Hazardous trace elements Leaching procedure Column 



We are grateful to Cambui Coal Company (Companhia Carbonifera Cambui) for permission to carry out this project.

Funding information

This project received financial support from São Paulo Research Foundation, FAPESP [grant number 2008/06775-6]. All ash analyses were carried out at Chemical and Environmental Analyses Laboratory, IPEN-CNEN/SP.


  1. Bolanz, R. M., Majzlan, J., & Göttlicher, J. (2012). Mineralogy, geochemistry, and arsenic speciation in coal combustion waste from Nováky, Slovakia. Fuel, 94, 125–136.Google Scholar
  2. Casarini, D. C. P., Alonso, C. D., Dias, C. L.; Rocca, A. C. C.; Lemos, M. M. G.; Batello, E. R.; Almeida, J. G.; Capeleti, A.; Cury, M.; Truzzi, A. C. (2001). Relatório de estabelecimento de valores orientadores para solos e águas subterrâneas no estado de São Paulo. CETESB, São Paulo, SP, Report n° R321.Google Scholar
  3. Catalano, J. G., Huhmann, B. L., Luo, Y., Mitnick, E. H., Slavney, A., & Giammar, D. E. (2012). Metal release and speciation changes during wet aging of coal fly ashes. Environmental Science & Technology, 46(21), 11804–11812.Google Scholar
  4. Chaudhary, S., & Banerjee, D. K. (2007). Speciation of some heavy metals in coal fly ash. Chemical Speciation & Bioavailability, 19(3), 95–102.Google Scholar
  5. Companhia Ambiental do Estado de São Paulo (CETESB) (2017), accessed on December, 2018.
  6. Deng, S., Shu, Y., Li, S., Tian, G., Huang, J., & Zhang, F. (2016). Chemical forms of the fluorine, chlorine, oxygen and carbon in coal fly ash and their correlations with mercury retention. Journal of Hazardous Materials, 301, 400–406.Google Scholar
  7. Depoi, F. S., Pozebon, D., & Kalkreuth, W. D. (2008). Chemical characterization of feed coals and combustion-by-products from Brazilian power plants. International Journal of Coal Geology, 76(3), 227–236.Google Scholar
  8. Dudas, M. J. (1981). Long-term leachability of selected elements from fly ash. Environmental Science & Technology, 15(7), 840–843.Google Scholar
  9. Dutta, B. K., Khanra, S., & Mallick, D. (2009). Leaching of elements from coal fly ash: assessment of its potential for use in filling abandoned coal mines. Fuel, 88(7), 1314–1323.Google Scholar
  10. Ferrarini, S. F., Cardoso, A. M., Paprocki, A., & Pires, M. (2016). Integrated synthesis of zeolites using coal fly ash: element distribution in the products, washing waters and effluent. Journal of the Brazilian Chemical Society, 27(11), 2034–2045.Google Scholar
  11. Flues, M., Hama, P., Lemes, M. J. L., Dantas, E. S. K., & Fornaro, A. (2002). Evaluation of the rainwater acidity of a rural region due to a coal-fired power plant in Brazil. Atmospheric Environment, 36(14), 2397–2404.Google Scholar
  12. Flues, M., Sato, I. M., Cotrim, M. B., Figueiredo Filho, P. M., & Camargo, I. M. C. (2008). Evaluation of the influence of a coal plant operation on metal and As concentrations in the soil of Figueira, PR-Brazil. Química Nova, 31(1), 25–30.Google Scholar
  13. Flues, M., Sato, I. M., Scapin, M. A., Cotrim, M. E. B., & Camargo, I. M. C. (2013). Toxic elements mobility in coal and ashes of Figueira coal power plant, Brazil. Fuel, 103, 430–436.Google Scholar
  14. Fungaro, A. D., Izidoro, J. C., Santos, F. S., & Wang, S. (2013). In P. K. Sarker (Ed.), Fly Ash: chemical composition, sources and potential environmental impacts (p. 59). New York: Nova Science Publishers.Google Scholar
  15. Fytianos, K., Tsaniklidi, B., & Voudrias, E. (1998). Leachability of heavy metals in Greek fly ash from coal combustion. Environment International, 24(4), 477–486.Google Scholar
  16. Gallardo, S., van Hullebusch, E. D., Pangayao, D., Salido, B. M., & Ronquillo, R. (2015). Chemical, leaching, and toxicity characteristics of coal ashes from circulating fluidized bed of a philippine coal-fired power plant. Water, Air, & Soil Pollution, 226(9), 312.Google Scholar
  17. Gomes, H. I., Mayes, W. M., Rogerson, M., Stewart, D. I., & Burke, I. T. (2016). Alkaline residues and the environment: a review of impacts, management practices and opportunities. Journal of Cleaner Production, 112, 3571–3582.Google Scholar
  18. Institute of Astronomy, Geophysics and Atmospheric Sciences, IAG. (2008). Boletim climatológico anual da estação meteorológica do IAG/USP. São Paulo: IAG-USP.Google Scholar
  19. Izquierdo, M., & Querol, X. (2012). Leaching behaviour of elements from coal combustion fly ash: an overview. International Journal of Coal Geology, 94, 54–66.Google Scholar
  20. Izquierdo, M., Moreno, N., Font, O., Querol, X., Alvarez, E., Antenucci, D., Nugteren, H., Luna, Y., & Fernández-Pereira, C. (2008). Influence of the co-firing on the leaching of trace pollutants from coal fly ash. Fuel, 87(10-11), 1958–1966.Google Scholar
  21. Jegadeesan, G., Al-Abed, S. R., & Pinto, P. (2008). Influence of trace metal distribution on its leachability from coal fly ash. Fuel, 87(10-11), 1887–1893.Google Scholar
  22. Khanra, S., Mallick, D., Dutta, S. N., & Chaudhuri, S. K. (1998). Studies on the phase mineralogy and leaching characteristics of coal fly ash. Water, Air, and Soil Pollution, 107(1-4), 251–275.Google Scholar
  23. Kim, A. G., & Kazonich, G. (2004). The silicate/non-silicate distribution of metals in fly ash and its effect on solubility. Fuel, 83(17-18), 2285–2292.Google Scholar
  24. Kim, Y., Kim, K., & Jeong, G. Y. (2017). Study of detailed geochemistry of hazardous elements in weathered coal ashes. Fuel, 193, 343–350.Google Scholar
  25. Levandowski, J., & Kalkreuth, W. (2009). Chemical and petrographical characterization of feed coal, fly ash and bottom ash from the Figueira Power Plant, Paraná, Brazil. International Journal of Coal Geology, 77(3-4), 269–281.Google Scholar
  26. Lieberman, R. N., Teutsch, N., & Cohen, H. (2014). Chemical and surface transformations of bituminous coal fly ash used in Israel following treatments with acidic and neutral aqueous solutions. Energy & Fuels, 28(7), 4657–4665.Google Scholar
  27. Lieberman, R. N., Querol, X., Moreno, N., Mastai, Y., & Cohen, H. (2016). Physical and chemical changes in coal fly ash during acidic or neutral wastes treatment, and its’ effect on the fixation process. Fuel, 184, 69–80.Google Scholar
  28. Liu, G., Cai, Y., Hernandez, D., Schrlau, J., & Allen, M. (2016). Mobility and speciation of arsenic in the coal fly ashes collected from the Savannah River Site (SRS). Chemosphere, 151, 138–144.Google Scholar
  29. Ludwig, B., Khanna, P., Prenzel, J., & Beese, F. (2005). Heavy metal release from different ashes during serial batch tests using water and acid. Waste Management, 25(10), 1055–1066.Google Scholar
  30. Neupane, G., & Donahoe, R. J. (2013). Leachability of elements in alkaline and acidic coal fly ash samples during batch and column leaching tests. Fuel, 104, 758–770.Google Scholar
  31. Pires, M., & Querol, X. (2004). Characterization of Candiota (South Brazil) coal and combustion by-product. International Journal of Coal Geology, 60(1), 57–72.Google Scholar
  32. Querol, X., Juan, R., Lopez-Soler, A., Fernandez-Turiel, J., & Ruiz, C. R. (1996). Mobility of trace elements from coal and combustion wastes. Fuel, 75(7), 821–838.Google Scholar
  33. Querol, X., Umaa, J. C., Alastuey, A., Bertrana, C., Lopez-Soler, A., & Plana, F. (2000). Extraction of water-soluble impurities from fly ash. Energy Sources, 22(8), 733–749.Google Scholar
  34. Querol, X., Umana, J. C., Alastuey, A., Ayora, C., Lopez-Soler, A., & Plana, F. (2001). Extraction of soluble major and trace elements from fly ash in open and closed leaching systems. Fuel, 80(6), 801–813.Google Scholar
  35. Quispe, D., Pérez-López, R., Silva, L. F., & Nieto, J. M. (2012). Changes in mobility of hazardous elements during coal combustion in Santa Catarina power plant (Brazil). Fuel, 94, 495–503.Google Scholar
  36. Ram, L. C., Srivastava, N. K., Tripathi, R. C., Thakur, S. K., Sinha, A. K., Jha, S. K., et al. (2007). Leaching behavior of lignite fly ash with shake and column tests. Environmental Geology, 51(7), 1119–1132.Google Scholar
  37. Rocha, F. R., da Silva, J. A. F., Lago, C. L., Fornaro, A., & Gutz, I. G. (2003). Wet deposition and related atmospheric chemistry in the Sao Paulo metropolis, Brazil: Part 1. Major inorganic ions in rainwater as evaluated by capillary electrophoresis with contactless conductivity detection. Atmospheric Environment, 37(1), 105–115.Google Scholar
  38. Rohde, G. M., Zwonok, O., Chies, F., & Silva, N. I. W. (2006). Cinzas de Carvão Fóssil no Brasil. Porto Alegre: Cientec.Google Scholar
  39. Sandeep, P., Sahu, S. K., Kothai, P., & Pandit, G. G. (2016). Leaching behavior of selected trace and toxic metals in coal fly ash samples collected from two thermal power plants, India. Bulletin of Environmental Contamination and Toxicology, 97(3), 425–431.Google Scholar
  40. Smichowski, P., Polla, G., Gómez, D., Espinosa, A. J. F., & López, A. C. (2008). A three-step metal fractionation scheme for fly ashes collected in an Argentine thermal power plant. Fuel, 87(7), 1249–1258.Google Scholar
  41. Sočo, E., & Kalembkiewicz, J. (2007). Investigations of sequential leaching behaviour of Cu and Zn from coal fly ash and their mobility in environmental conditions. Journal of Hazardous Materials, 145(3), 482–487.Google Scholar
  42. United States Environmental Protection Agency (USEPA). (2001)., accessed on May 2019.
  43. Wang, J., Wang, T., Burken, J. G., Chusuei, C. C., Ban, H., Ladwig, K., & Huang, C. P. (2008a). Adsorption of arsenic (V) onto fly ash: a speciation-based approach. Chemosphere, 72(3), 381–388.Google Scholar
  44. Wang, W., Qin, Y., Song, D., & Wang, K. (2008b). Column leaching of coal and its combustion residues, Shizuishan, China. International Journal of Coal Geology, 75(2), 81–87.Google Scholar
  45. Ward, C. R., French, D., Jankowski, J., Dubikova, M., Li, Z., & Riley, K. W. (2009). Element mobility from fresh and long-stored acidic fly ashes associated with an Australian power station. International Journal of Coal Geology, 80(3-4), 224–236.Google Scholar
  46. Yılmaz, H. (2015). Characterization and comparison of leaching behaviors of fly ash samples from three different power plants in Turkey. Fuel Processing Technology, 137, 240–249.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • C. N. Lange
    • 1
    Email author
  • M. Flues
    • 2
  • G. Hiromoto
    • 2
  • M. E. G. Boscov
    • 3
  • I. M. C. Camargo
    • 2
  1. 1.Centro de Ciências Naturais e HumanasUniversidade Federal do ABC, CCNH-UFABCSanto AndréBrazil
  2. 2.Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SPSão PauloBrazil
  3. 3.Escola Politécnica da Universidade de São Paulo, POLI-USPSão PauloBrazil

Personalised recommendations