Mycoremediation: a treatment for heavy metal-polluted soil using indigenous metallotolerant fungi

  • Ibrar KhanEmail author
  • Madiha Ali
  • Maryam Aftab
  • SajidUllah Shakir
  • Sadia Qayyum
  • Kashif Syed Haleem
  • Isfahan TauseefEmail author


Bioleaching of heavy metals from industrial contaminated soil using metallotolerant fungi is the most efficient, cost-effective, and eco-friendly technique. In the current study, the contaminated soil samples from Hattar Industrial Estate revealed a total lead (Pb) and mercury (Hg) concentration of 170.90 mg L−1 and 26.66 mg L−1, respectively. Indigenous metallotolerant fungal strains including Aspergillus niger M1, Aspergillus fumigatus M3, Aspergillus terreus M6, and Aspergillus flavus M7 were isolated and identified by pheno- and genotyping. A. fumigatus and A. flavus of soil sample S1 showed higher efficiency for Pb removal (99.20% and 99.30%, respectively), in SDB medium. Likewise, A. niger and A. terreus of soil sample S2 showed higher efficiency for Hg removal (96% and 95.50%, respectively), in YPG medium. Furthermore, the maximum uptake efficiency for Pb removal (8.52 mg g−1) from soil sample S1 was noticed for A. fumigatus in YPG medium, while the highest uptake efficiency (4.23 mg g−1) of A. flavus M2 strain was observed with CYE medium. Similarly, the maximum uptake efficiency of 0.41 mg g−1 and 0.44 mg g−1 for Hg removal from soil sample S2 was found for A. niger and A. terreus strains, respectively, in CYE medium. Thus, in order to address the major issue of industrial waste pollution, indigenous fungal strains A. fumigatus (M1) and A. terreus (M7), isolated in this study, could be used (ex situ or in situ) to remediate soils contaminated with Pb and Hg.


Heavy metal Hattar Industrial Estate (HIE) Indigenous microbes Fungal isolates Mycoremediation 



This work was supported by the Higher Education Commission, Government of Pakistan, under SRGP Program (No: 21-1259/SRGP/R&D/HEC/2017).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Abd El Hameed, A. H., Eweda, W. E., Abou-Taleb, K. A. A., & Mira, H. I. (2015). Biosorption of uranium and heavy metals using some local fungi isolated from phosphatic fertilizers. Annals of Agricultural Sciences, 60(2), 345–351. Scholar
  2. Abraham, J., Dowling, K., & Florentine, S. (2018). Controlled burn and immediate mobilization of potentially toxic elements in soil, from a legacy mine site in Central Victoria, Australia. Science of The Total Environment, 616, 1022–1034.CrossRefGoogle Scholar
  3. Al-Samarrai, T., & Schmid, J. (2000). A simple method for extraction of fungal genomic DNA. Letters in Applied Microbiology, 30(1), 53–56.CrossRefGoogle Scholar
  4. Anand, P., Isar, J., Saran, S., & Saxena, R. K. (2006a). Bioaccumulation of copper by Trichoderma viride. Bioresource Technology, 97(8), 1018–1025. Scholar
  5. Anand, P., Isar, J., Saran, S., & Saxena, R. K. (2006b). Bioaccumulation of copper by Trichoderma viride. Bioresource Technology, 97(8), 1018–1025. Scholar
  6. Bahaloo-Horeh, N., Mousavi, S. M., & Baniasadi, M. (2018). Use of adapted metal tolerant Aspergillus niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries. Journal of Cleaner Production., 197, 1546–1557.CrossRefGoogle Scholar
  7. Barrech, D., Ali, I., & Tareen, M. (2018). 1. A review on mycoremediation—the fungal bioremediation. Pure and Applied Biology (PAB), 7(1), 343–348.Google Scholar
  8. Brierley, C. L. (1990). Bioremediation of metal-contaminated surface and groundwaters. Geomicrobiology Journal, 8(3-4), 201–223. Scholar
  9. Chai, L., Yang, Z., Shi, Y., Liao, Q., Min, X., Li, Q., et al. (2018). Cr (VI)-reducing strain and its application to the microbial remediation of Cr (VI)-contaminated soils. In Twenty years of research and development on soil pollution and remediation in China (pp. 487-498). Springer.Google Scholar
  10. Chanteperdrix, V., Bourgerette, E., Gantier, J., Herman, D., & Lauby, M. (2008) Mycological examination of a non-uniseriate Fumigati section's Aspergillus. In Annales de biologie clinique (Vol. 66, pp. 581-583, Vol. 5)Google Scholar
  11. Chen, H., & Pan, S.-s. (2005). Bioremediation potential of spirulina: toxicity and biosorption studies of lead. Journal of Zhejiang University. Science. B, 6(3), 171.CrossRefGoogle Scholar
  12. Chowdhury, M. A. H., Hoque, M. M., Naher, K., Islam, M., Tamim, U., Alam, K., et al. (2017). Analysis of heavy metals and other elements in textile waste using neutron activation analysis and atomic absorption spectrophotometry. Journal of Environmental Science, Toxicology and Food Technology, 11, 14.CrossRefGoogle Scholar
  13. Das, A., & Osborne, J. W. (2018). Bioremediation of heavy metals. In Nanotechnology, food security and water treatment (pp. 277-311). Springer.Google Scholar
  14. El Hameed, A. H. A., Eweda, W. E., Abou-Taleb, K. A., & Mira, H. (2015). Biosorption of uranium and heavy metals using some local fungi isolated from phosphatic fertilizers. Annals of Agricultural Sciences, 60(2), 345–351.CrossRefGoogle Scholar
  15. Faraji, F., Golmohammadzadeh, R., Rashchi, F., & Alimardani, N. (2018). Fungal bioleaching of WPCBs using Aspergillus niger: observation, optimization and kinetics. Journal of Environmental Management, 217, 775–787.CrossRefGoogle Scholar
  16. Faryal, R., Sultan, A., Tahir, F., Ahmed, S., & Hameed, A. (2007). Biosorption of lead by indigenous fungal strains. Pakistan Journal of Botany, 39(2), 615.Google Scholar
  17. Fernández, P. M., Viñarta, S. C., Bernal, A. R., Cruz, E. L., & Figueroa, L. I. (2018). Bioremediation strategies for chromium removal: current research, scale-up approach and future perspectives. Chemosphere., 208, 139–148.CrossRefGoogle Scholar
  18. Gautam, S., Bundela, P., Pandey, A., Awasthi, M., & Sarsaiya, S. (2011). Isolation, identification and cultural optimization of indigenous fungal isolates as a potential bioconversion agent of municipal solid waste. Annals of Environmental Science, 5(1), 4.Google Scholar
  19. Gopinath, A., Krishna, K., & Karthik, C. (2020). Adsorptive removal and recovery of heavy metal ions from aqueous solution/effluents using conventional and non-conventional materials. In Modern age waste water problems (pp. 309-328). Springer.Google Scholar
  20. Hietala, K. A., & Roane, T. M. (2009). Microbial remediation of metals in soils. In A. Singh, R. C. Kuhad, & O. P. Ward (Eds.), Advances in applied bioremediation (pp. 201–220). Berlin, Heidelberg: Springer Berlin Heidelberg.CrossRefGoogle Scholar
  21. Hussain, Z., Chaudhry, M. R., Zuberi, F. A., Hussain, Q., & Sharif, M. (1996). Contaminants and the soil environment of Pakistan. In R. Naidu, R. S. Kookana, D. P. Oliver, S. Rogers, & M. J. McLaughlin (Eds.), Contaminants and the soil environment in the Australasia-Pacific Region: proceedings of the first Australasia-Pacific Conference on Contaminants and Soil Environment in the Australasia-Pacific Region, held in Adelaide, Australia, 18–23 February 1996 (pp. 629-646). Dordrecht: Springer Netherlands.Google Scholar
  22. Iheanacho, H. E., Njobeh, P. B., Dutton, F. M., Steenkamp, P. A., Steenkamp, L., Mthombeni, J. Q., Daru, B. H., & Makun, A. H. (2014). Morphological and molecular identification of filamentous Aspergillus flavus and Aspergillus parasiticus isolated from compound feeds in South Africa. Food Microbiology, 44, 180–184.CrossRefGoogle Scholar
  23. Iskandar, N. L., Zainudin, N. A. I. M., & Tan, S. G. (2011). Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. Journal of Environmental Sciences, 23(5), 824–830. Scholar
  24. Iwamoto, T., & Nasu, M. (2001). Current bioremediation practice and perspective. Journal of Bioscience and Bioengineering, 92(1), 1–8. Scholar
  25. Javanbakht, V., Alavi, S. A., & Zilouei, H. (2014). Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Science and Technology, 69(9), 1775–1787.CrossRefGoogle Scholar
  26. Jobby, R., Jha, P., Yadav, A. K., & Desai, N. (2018). Biosorption and biotransformation of hexavalent chromium [Cr (VI)]: a comprehensive review. Chemosphere, 207, 255–266.CrossRefGoogle Scholar
  27. Khan, A. G. (2001). Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil. Environment International, 26(5-6), 417–423.CrossRefGoogle Scholar
  28. Khan, I., Nazir, K., Wang, Z.-P., Liu, G.-L., & Chi, Z.-M. (2014). Calcium malate overproduction by Penicillium viticola 152 using the medium containing corn steep liquor. Applied Microbiology and Biotechnology, 98(4), 1539–1546.CrossRefGoogle Scholar
  29. Khan, I., Qayyum, S., Ahmed, S., Haleem, K. S., Liu, G.-L., & Chi, Z.-M. (2017). Isolation and characterization of medicinally important marine Penicillium isolates. Pakistan Journal of Zoology, 49(2).Google Scholar
  30. Khodja, H., Iddou, A., Aguedal, H., Aziz, A., & Shishkin, A. (2018). Bioremoval of lead (II) and cadmium (II) in single and multicomponent systems using Penicillium sp. In Key Engineering Materials (Vol. 762, pp. 93-98). Trans Tech Publ.Google Scholar
  31. Kumar, V. (2018). Mechanism of microbial heavy metal accumulation from a polluted environment and bioremediation. In Microbial cell factories (pp. 149-174). CRC Press.Google Scholar
  32. Lass-Florl, C. (2012). Aspergillus terreus: how inoculum size and host characteristics affect its virulence. The Journal of Infectious Diseases, 205(8), 1192–1194. Scholar
  33. Muñoz, A., Ruiz, E., Abriouel, H., Gálvez, A., Ezzouhri, L., Lairini, K., et al. (2012). Heavy metal tolerance of microorganisms isolated from wastewaters: identification and evaluation of its potential for biosorption. Chemical Engineering Journal, 210, 325–332.CrossRefGoogle Scholar
  34. Nair, S., & Abraham, J. (2018). Hazardous waste management with special reference to biological treatment.Google Scholar
  35. O’Sullivan, T. M. (2018). Environmental security and public health. In Introduction to homeland security (pp. 203-236). Routledge.Google Scholar
  36. Ong, G. H., Leeraj, C., Soh, J., & Wong, L. S. (2017). Isolation and identification of fungi from polluted soil in Peninsular Malaysia for copper remediation. Pollution Research Paper, 36(1), 18–21.Google Scholar
  37. Pan, X., Achal, V., Zhao, C., Yang, J., & Kumari, D. (2018). Microbial remediation of heavy metals and arsenic-contaminated environments in the arid zone of northwest China. In Twenty years of research and development on soil pollution and remediation in China (pp. 477-486). Springer.Google Scholar
  38. Pandey, A., Tripathi, P. H., Pandey, S. C., Pathak, V. M., & Nailwal, T. K. (2018). Removal of toxic pollutants from soil using microbial biotechnology. In Microbial biotechnology in environmental monitoring and cleanup (pp. 86-105). IGI Global.Google Scholar
  39. Park, S.-W., Lee, J.-Y., Yang, J.-S., Kim, K.-J., & Baek, K. (2009). Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc. Journal of Hazardous Materials, 169(1), 1168–1172. Scholar
  40. Pedersen, L. H., Skouboe, P., Boysen, M., Soule, J., & Rossen, L. (1997). Detection of Penicillium species in complex food samples using the polymerase chain reaction. International Journal of Food Microbiology, 35(2), 169–177.CrossRefGoogle Scholar
  41. Penny, C., Vuilleumier, S., & Bringel, F. (2010). Microbial degradation of tetrachloromethane: mechanisms and perspectives for bioremediation. FEMS Microbiology Ecology, 74(2), 257–275. Scholar
  42. Pitt, J. I., & Samson, R. A. (2014). Integration of modern taxonomic methods for Penicillium and Aspergillus classification. CRC Press.Google Scholar
  43. Qayyum, S., Khan, I., Bhatti, Z. A., Tang, F., & Peng, C. (2016a). Fungal strain Aspergillus flavus F3 as a potential candidate for the removal of lead (II) and chromium (VI) from contaminated soil. Main Group Metal Chemistry, 39(3-4), 93–104.CrossRefGoogle Scholar
  44. Qayyum, S., Khan, I., Maqboo, F., Zhao, Y., Gu, Q., & Peng, C. (2016b). Isolation and characterization of heavy metal resistant fungal isolates from industrial soil in China. Pakistan Journal of Zoology, 48(5).Google Scholar
  45. Qayyum, S., Khan, I., Meng, K., Zang, X., Zhao, Y., Gu, Q., et al. (2016c). Bioaccumulation of heavy metals from aqueous solution using indigenous fungal isolates. Indian Journal of Geo-Marine Sciences, 45(4), 499–507.Google Scholar
  46. Rehman, A., Jingdong, L., Shahzad, B., Chandio, A. A., Hussain, I., Nabi, G., & Iqbal, M. S. (2015). Economic perspectives of major field crops of Pakistan: an empirical study. Pacific Science Review B: Humanities and Social Sciences, 1(3), 145–158. Scholar
  47. Samson, R. A., & Pitt, J. I. (2000). Integration of modern taxonomic methods for Penicillium and Aspergillus classification. Taylor & Francis.Google Scholar
  48. Sanyal, A., Rautaray, D., Bansal, V., Ahmad, A., & Sastry, M. (2005). Heavy-metal remediation by a fungus as a means of production of lead and cadmium carbonate crystals. Langmuir, 21(16), 7220–7224. Scholar
  49. Sanyaolu, A. A. A. (2018). Verification of Aspergillus niger as a myco-remediation agent of lambda-cyhalothrin and associated heavy metals in Lactuca sativa (L.) leaf. Journal of Applied Sciences and Environmental Management, 22(5), 621–624.CrossRefGoogle Scholar
  50. Schultze-Lam, S., Urrutia-Mera, M., & Beveridge, T. J. (2018). Metal and silicate sorption and subsequent mineral formation on bacterial surfaces: subsurface implications. In Metal contaminated aquatic sediments (pp. 111-147). Routledge.Google Scholar
  51. Sen, M. (2018). Enhanced biological removal of Cr (VI) in continuous stirred tank reactor (CSTR) using Aspergillus sp. Brazilian Journal of Biological Sciences, 5(9), 33–45.CrossRefGoogle Scholar
  52. Singh, P. C., Srivastava, S., Shukla, D., Bist, V., Tripathi, P., Anand, V., et al. (2018). Mycoremediation mechanisms for heavy metal resistance/tolerance in plants. In Mycoremediation and environmental sustainability (pp. 351-381). Springer.Google Scholar
  53. Smith, J., & Doran, J. (1996). Measurement and use of pH and electrical conductivity for soil quality analysis. Methods for assessing soil quality, 49.Google Scholar
  54. Su, S. L., Singh, D., & Baghini, M. S. (2014). A critical review of soil moisture measurement. Measurement, 54, 92–105.CrossRefGoogle Scholar
  55. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.CrossRefGoogle Scholar
  56. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In Molecular, clinical and environmental toxicology (pp. 133-164). Springer.Google Scholar
  57. Upadhyay, A. K., Singh, R., & Singh, D. (2019). Phycotechnological approaches toward wastewater management. In Emerging and eco-friendly approaches for waste management (pp. 423-435). Springer.Google Scholar
  58. Zafar, S., Aqil, F., & Ahmad, I. (2007). Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technology, 98(13), 2557–2561.CrossRefGoogle Scholar
  59. Zhang, X.-h., Wang, H., & Luo, Q.-s. (2001). Electrokinetics in remediation of contaminated groundwater and soils. Advances In Water Science, 12(2), 249–255.Google Scholar
  60. Zhang, W., Jiang, F., & Ou, J. (2011). Global pesticide consumption and pollution: with China as a focus. Proceedings of the International Academy of Ecology and Environmental Sciences, 1(2), 125.Google Scholar
  61. Zolfaghari, G. (2018). Risk assessment of mercury and lead in fish species from Iranian international wetlands. MethodsX, 5, 438–447.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MicrobiologyAbbottabad University of Science & TechnologyHavelianPakistan
  2. 2.Department of MicrobiologyHazara UniversityMansehraPakistan

Personalised recommendations