Advertisement

Regional coral disease outbreak overwhelms impacts from a local dredge project

  • Brooke E. Gintert
  • William F. PrechtEmail author
  • Ryan Fura
  • Kristian Rogers
  • Mike Rice
  • Lindsey L. Precht
  • Martine D’Alessandro
  • Jason Croop
  • Christina Vilmar
  • Martha L. Robbart
Article

Abstract

A repeated-measures coral monitoring program established as part of the PortMiami expansion program provided an unparalleled opportunity to quantify the levels of coral mortality that resulted from both local dredging stress and as a result of climate-related bleaching stress and the subsequent outbreak of a white-plague-like disease (WPD) epizootic. By comparing measured rates of coral mortality at 30 sites throughout Miami-Dade County to predicted mortality levels from three different coral mortality scenarios, we were able to evaluate the most likely source of coral mortality at both the local and regional levels during the 2014–2016 coral bleaching and WPD event. These include scenarios that assume (1) local dredging increases coral disease mortality, (2) regional climate-related stress is the proximal driver of coral disease mortality, and (3) local and regional stressors are both responsible for coral disease mortality. Our results show that species-specific susceptibility to disease is the determining factor in 93.3% of coral mortality evaluated throughout Miami-Dade County, whereas local dredging stress only accurately predicted coral mortality levels 6.7% of the time. None of the monitoring locations adjacent to the PortMiami expansion had levels of coral mortality that exceeded predictions when coral community composition was taken into account. The novel result of this analysis is that climate-mediated coral disease mortality was more than an order of magnitude (14x) more deadly than even the largest marine construction project performed in the USA, and that until climate change is addressed, it is likely that local attempts to manage coral resilience will continue to fail.

Keywords

Coral reefs Florida Climate change Disease Bleaching Dredging PortMiami 

Notes

Acknowledgments

Thanks to Alison Conner, Jeff Coward, Laura Croop, Herve Jobert, Christina Marmet, Alex Schroeder, and Tyler Shelley for assistance with scientific diving, data collection, and analysis. Kudos to our boat captain Vern Smith for keeping us safe through thousands of dives no matter how crappy the conditions. We also would like to thank Richard Aronson, Fred Aschauer, Becky Hope, Danielle Irwin, Les Kaufman, Craig Kruempel, Jeff Littlejohn, Jamie Monty, Caroline Rogers, and Robert van Woesik for insightful conservations and discussions over the past few years that helped us stay focused. We are especially indebted to Steven Miller for his thoughtful analysis and editorial advice. We would also like to thank Lauren Toth and John Bruno for commenting on an early draft of this manuscript. This paper is dedicated to the memory of our beloved friend and colleague Ruth Gates who made saving coral reefs her life’s mission. We will miss her zest for life, her generous spirit, her contagious enthusiasm, her commitment and dedication to her craft, her courageousness in the face of despair, but most of all her never-ending smile.

Funding information

This work was supported in-part to the authors by salaries from the marine and environmental sciences firm Dial Cordy and Associates, Inc. (DCA). DCA received funding under contracts to Great Lakes Dredge and Dock Company, LLC (GLDD) sponsored by the USACE, Jacksonville District and PortMiami, Miami-Dade County for environmental compliance and analysis under FDEP Permit No. 0305721-001-BI. These contracts provided support to the investigators to undertake monitoring of coral populations in the vicinity of PortMiami in Miami-Dade County, Florida. The funders had no role in data collection and analysis, decision to publish, or preparation of the manuscript. This manuscript was written on the personal time of the authors and the views, statements, findings, conclusions, and recommendations expressed herein are their own and do not necessarily reflect the views of DCA, GLDD, the USACE, PortMiami, Miami-Dade County, or any of their present employers.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10661_2019_7767_MOESM1_ESM.docx (5.1 mb)
ESM 1 (DOCX 5241 kb)

References

  1. Abdel-Salam, H. A., & Porter, J. W. (1988). Physiological effects of sediment rejection on photosynthesis and respiration in three Caribbean reef corals. Proceedings 6th International Coral Reef Symposium, Townsville 2, 285–292.Google Scholar
  2. Aeby, G., Ruzicka, R., & Bohnsack, K. (2017). Status and trends from a large-scale coral disease outbreak. 38th Meeting of the US Coral Reef Task Force. Ft Lauderdale, Florida. https://coralreef.gov/meeting38/docs/status_lessons_learned_coral_disease_outbreak.pdf.  Accessed 4 Oct 2017.
  3. AGRRA (Atlantic and Gulf Rapid Reef Assessment). (2019). Coral disease outbreak—stony coral tissue loss disease. http://www.agrra.org/coral-disease-outbreak/. Accessed 15 Jul 2019.
  4. Ainsworth, T. D., & Hoegh-Guldberg, O. (2009). Bacterial communities closely associated with coral tissues vary under experimental and natural reef conditions and thermal stress. Aquatic Biology, 4, 289–296.  https://doi.org/10.3354/ab00102  CrossRefGoogle Scholar
  5. Ainsworth, T. D., Kramasky-Winter, E., Loya, Y., Hoegh-Guldberg, O., & Fine, M. (2007). Coral disease diagnostics: what’s between a plague and a band? Applied and Environmental Microbiology, 73(3), 981–992.  https://doi.org/10.1128/AEM.02172-06.CrossRefGoogle Scholar
  6. Alling, A. B., Doherty, O. R., Logan, H. E., Feldman, L., & Dustan, P. (2007). Catastrophic coral mortality in the remote central Pacific Ocean: Kirabati Phoenix Islands. Atoll Research Bull, 551, 1–17.Google Scholar
  7. Altizer, S., Ostfeld, R. S., Johnson, P. T., Kutz, S., & Harvell, C. D. (2013). Climate change and infectious diseases: from evidence to a predictive framework. Science, 341(6145), 514–519.  https://doi.org/10.1126/science.1239401.CrossRefGoogle Scholar
  8. Alvarez-Filip, L. (2018). Outbreaks of Caribbean coral disease on the rise. Retrieved from BARCO LAB: https://www.barcolab.org/copy-of-outbreak-of-caribbean-coral. Accessed 4 Nov 2018.
  9. Alvarez-Filip, L., Estrada-Saldívar, N., Pérez-Cervantes, E., Molina-Hernández, A.. & Gonzalez-Barrios, F.J. (2019). A rapid spread of the Stony Coral Tissue Loss Disease outbreak in the Mexican Caribbean. PeerJ Preprints, 7, e27893v1.  https://doi.org/10.7287/peerj.preprints.27893v1
  10. Alverez, L., (2016). Dredging of Miami port badly damaged coral reef, study finds. The New York Times, May 1, 2016. https://www.nytimes.com/2016/05/02/us/dredging-of-miami-port-badly-damaged-coral-reef-study-finds.html.
  11. Antonius, A. (1974). Sedimentation project final report: Harbor Branch Foundation Inc., Ft. Pierce, FL. 225 pp.Google Scholar
  12. Aronson, R. B., & Precht, W. F. (2001a). White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia, 460, 25–38.CrossRefGoogle Scholar
  13. Aronson, R. B., & Precht, W. F. (2001b). Evolutionary paleoecology of Caribbean coral reefs. In W. D. Allmon & D. J. Bottjer (Eds.), Evolutionary paleoecology: the ecological context of macroevolutionary change (pp. 171–233). New York: Columbia University Press.Google Scholar
  14. Aronson, R. B., & Precht, W. F. (2006). Conservation, precaution, and Caribbean reefs. Coral Reefs, 25(3), 441–450.  https://doi.org/10.1007/s00338-006-0122-9.CrossRefGoogle Scholar
  15. Aronson, R. B., & Precht, W. F. (2009). Sustaining ecosystem services in the global coral reef crisis. American Institute of Physics Conference Proceedings, 1157(1), 48–55.  https://doi.org/10.1063/1.3208031.CrossRefGoogle Scholar
  16. Aronson, R. B., & Precht, W. F. (2016). Physical and biological drivers of coral-reef dynamics. In D. K. Hubbard, C. S. Rogers, J. H. Lipps, & G. D. Stanley Jr. (Eds.), Coral reefs at the crossroads (pp. 261–265). Dordrecht: Springer.  https://doi.org/10.1007/978-94-017-7567-0_11.CrossRefGoogle Scholar
  17. Aronson, R. B., Macintyre, I. G., Lewis, S. A., & Hilbun, N. L. (2005). Emergent zonation and geographic convergence of coral reefs. Ecology, 86(10), 2586–2600.  https://doi.org/10.1890/05-0045.CrossRefGoogle Scholar
  18. Aronson, R. B., Precht, W. F., & Macintyre, I. G. (2006). Global change and biotic homogenization of coral reefs. Geological Society America Abstracts with Program, 38(7), 535 https://gsa.confex.com/gsa/2006AM/finalprogram/abstract_105494.htm.Google Scholar
  19. Banks, K. W., Riegl, B. M., Shinn, E. A., Piller, W. E., & Dodge, R. E. (2007). Geomorphology of the southeast Florida continental reef tract (Miami-Dade, Broward, and Palm Beach counties, USA). Coral Reefs, 26(3), 617–633.  https://doi.org/10.1007/s00338-007-0231-0.CrossRefGoogle Scholar
  20. Banks, K. W., Riegl, B. M., Richards, V. P., Walker, B. K., Helmle, K. P., Jordan, L. K., et al. (2008). The reef tract of continental southeast Florida (Miami-Dade, Broward and Palm Beach counties, USA). In B. Riegl & R. E. Dodge (Eds.), Coral reefs of the USA (pp. 175–220). Dordrecht: Springer.  https://doi.org/10.1007/978-1-4020-6847-8_5.CrossRefGoogle Scholar
  21. Blair, S. M., & Flynn, B. S. (1989). Biological monitoring of hard bottom reef communities off Dade County Florida: community description. Proceedings American Academy Underwater Sciences 9th Annual Scientific Diving Symposium, (pp. 9–24).Google Scholar
  22. Borger, J. L. (2005). Scleractinian coral diseases in south Florida: incidence, species susceptibility, and mortality. Diseases of Aquatic Organisms, 67(3), 249–258.CrossRefGoogle Scholar
  23. Boulton, G. (2013). Science as an open enterprise – open access, Edinburgh, The Royal Society. http://datablog.is.ed.ac.uk/files/2013/10/OpenAcecessWeek_Boulton.pdf. Accessed 4 Nov 2018.
  24. Brandt, M., & McManus, J. W. (2009). Disease incidence is related to bleaching extent in reef-building corals. Ecology, 90(10), 2859–2867.  https://doi.org/10.1890/08-0445.1.CrossRefGoogle Scholar
  25. Brodnicke, O. B., Bourne, D. G., Heron, S. F., Pears, R. J., Stella, J. S., Smith, H. A., et al. (2019). Unravelling the links between heat stress, bleaching and disease: fate of tabular corals following a combined disease and bleaching event. Coral Reefs, 38(4), 591–603.  https://doi.org/10.1007/s00338-019-01813-9 CrossRefGoogle Scholar
  26. Bruckner, A. W., & Bruckner, R. J. (2006). Consequences of yellow band disease (YBD) on Montastraea annularis (species complex) populations on remote reefs off Mona Island, Puerto Rico. Diseases of Aquatic Organisms, 69(1), 67–73.  https://doi.org/10.3354/dao069067 CrossRefGoogle Scholar
  27. Bruno, J. F. (2017). The coral disease triangle. Nature Climate Change, 5(4), 302–303.CrossRefGoogle Scholar
  28. Bruno, J. F., & Valdivia, A. (2016). Coral reef degradation is not correlated with local human population density. Scientific Reports, 6, 29778.  https://doi.org/10.1038/srep29778
  29. Bruno, J. F., Petes, L. E., Harvell, D. C., & Hettinger, A. (2003). Nutrient enrichment can increase the severity of coral diseases. Ecology Letters, 6(12), 1056–1061.CrossRefGoogle Scholar
  30. Bruno, J. F., Selig, E. R., Casey, K. S., Page, C. A., Willis, B. L., Harvell, C. D., et al. (2007). Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biology, 5(6), e124.  https://doi.org/10.1371/journal.pbio.0050124.CrossRefGoogle Scholar
  31. Budd, A. F., Fukami, H., Smith, N. D., & Knowlton, N. (2012). Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zoological Journal of the Linnean Society, 166(3), 465–529.  https://doi.org/10.1111/j.1096-3642.2012.00855.x.CrossRefGoogle Scholar
  32. Burge, C. A., Eakin, M. C., Friedman, C. S., Froelich, B., Hershberger, P. K., Hofmann, E. E., et al. (2014). Climate change influences on marine infectious diseases: implications for management and society. Annual Review of Marine Science, 6, 249–277.  https://doi.org/10.1146/annurev-marine-010213-135029 CrossRefGoogle Scholar
  33. Burman, S. G., Aronson, R. B., & van Woesik, R. (2012). Biotic homogenization of coral assemblages along the Florida reef tract. Marine Ecology Progress Series, 467, 89–96.  https://doi.org/10.3354/meps09950.CrossRefGoogle Scholar
  34. Bythell, J., Pantos, O., & Richardson, L. (2004). White plague, white band, and other “white” diseases. In E. Rosenberg & Y. Loya (Eds.), Coral health and disease (pp. 351–365). Berlin: Springer.  https://doi.org/10.1007/978-3-662-06414-6_20.CrossRefGoogle Scholar
  35. Caldwell, J., Aeby, G., Heron, S. F., & Donahue, M. J. (2019). Case-control design identifies ecological drivers of endemic coral diseases. bioRxiv, 662320.  https://doi.org/10.1101/662320.
  36. Campbell, A. M., Fleisher, J., Sinigalliano, C., White, J. R., & Lopez, J. V. (2015). Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida. MicrobiologyOpen, 4(3), 390–408.  https://doi.org/10.1002/mbo3.245.CrossRefGoogle Scholar
  37. Cárdenas, A., Rodriguez-R, L. M., Pizarro, V., Cadavid, L. F., & Arévalo-Ferro, C. (2012). Shifts in bacterial communities of two Caribbean reef-building coral species affected by white plague disease. The ISME Journal, 6, 502–512.  https://doi.org/10.1038/ismej.2011.123.CrossRefGoogle Scholar
  38. Carsey, T., Stamates, J., Enochs, I., Jones, P., & Featherstone, C. (2016). Water quality and reef monitoring along the southeast coast—numeric nutrient criteria study. NOAA Technical Report, OAR AOML-XX, Atlantic Oceanographic and Meteorological Laboratory, Miami, FL.Google Scholar
  39. Christopher, J. (2017). US withdrawal from the COP21 Paris climate change agreement, and its possible implications. Science Progress, 100, 411–419.  https://doi.org/10.3184/003685017X15063357842600.CrossRefGoogle Scholar
  40. Courtenay, W. R., Herrema, D. J., Thompson, M. J., Azzinaro, W. P., & van Montfrans, J. (1974). Ecological monitoring of beach erosion control projects, Broward County, Florida and adjacent areas. Technical Memorandum No. 41, U.S. Army Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir.Google Scholar
  41. Cróquer, A., & Weil, E. (2009). Changes in Caribbean coral disease prevalence after the 2005 bleaching event. Diseases of Aquatic Organisms, 87, 33–43.  https://doi.org/10.3354/dao02164.CrossRefGoogle Scholar
  42. Cróquer, A., Weil, E., Zubillaga, A. L., & Pauls, S. M. (2005). Impact of a white plague-II outbreak on a coral reef in the archipelago Los Roques National Park, Venezuela. Caribbean Journal of Science, 41, 815–823.Google Scholar
  43. CSA (CSA Ocean Sciences Inc.). (2014). Advanced compensatory mitigation completion report (associated with the Miami Harbor Construction Dredging - Phase III Project). Prepared for USACE Jacksonville District.Google Scholar
  44. CSI (Coastal Systems International Inc.). (2016). Transplanted corals to artificial reefs—24 month post transplant monitoring report. Prepared for Miami Harbor Phase III Federal Channel Expansion. PortMiami, Miami-Dade County Contract No. E12-SEA-03/Project No. 1999-027.Google Scholar
  45. Cunning, R., Silverstein, R. N., Barnes, B. B., & Baker, A. C. (2019). Extensive coral mortality and critical habitat loss following dredging and their association with remotely-sensed sediment plumes. Marine Pollution Bulletin, 145, 185–199.  https://doi.org/10.1016/j.marpolbul.2019.05.027CrossRefGoogle Scholar
  46. DCA (Dial Cordy and Associates Inc.). (2010). Miami Harbor hardbottom assessment pilot study and quantitative study plan. Technical Memorandum Prepared for U.S. Army Corps of Engineers, Jacksonville District.Google Scholar
  47. DCA (Dial Cordy and Associates Inc.). (2012). Miami Harbor baseline hardbottom study. Prepared for U.S. Army Corps of Engineers, Jacksonville District.Google Scholar
  48. DCA (Dial Cordy and Associates Inc.). (2015a). Impact assessment report on hardbottom reef FDEP Final Order #0305721-001-BI. 2012, PortMiami Phase III Federal Channel Expansion Project. Florida Department of Environmental Protection, Tallahassee.Google Scholar
  49. DCA (Dial Cordy and Associates Inc.). (2015b). Impact Assessment report on middle and outer reef. FDEP Final Order #0305721-001-BI. 2012, PortMiami Phase III Federal Channel Expansion Project. Florida Department of Environmental Protection, Tallahassee.Google Scholar
  50. DCA (Dial Cordy and Associates Inc.). (2015c). Quantitative post-construction analysis for hardbottom benthic communities. FDEP Final Order #0305721-001-BI. 2012, PortMiami Phase III Federal Channel Expansion Project. Florida Department of Environmental Protection, Tallahassee, FL. http://www.saj.usace.army.mil/Portals/44/docs/Navigation/Ports/Miami%20Harbor/Near-ShoreHard-BottomReportNov2015.pdf. Accessed 8 Dec 2015
  51. DCA (Dial Cordy and Associates Inc.). (2015d). Quantitative post-construction analysis for middle and outer reef benthic communities. FDEP Final Order #0305721-001-BI. 2012, PortMiami Phase III Federal Channel Expansion Project. Florida Department of Environmental Protection, Tallahassee, FL. http://www.saj.usace.army.mil/Portals/44/docs/Navigation/Ports/Miami%20Harbor/MiddleandOuterReefsReportNov2015.pdf.
  52. DCA (Dial Cordy and Associates Inc.). (2017). One-year post-construction impact assessment for hardbottom middle and outer reef benthic communities at permanent sites. FDEP Final Order #0305721-001-BI. 2012. PortMiami Phase III Federal Channel Expansion Project. Florida Department of Environmental Protection, Tallahassee, FL. http://www.saj.usace.army.mil/Portals/44/docs/Planning/EnvironmentalBranch/EnvironmentalDocs/Dade/PortMiami_Permanent_Site_Report_04_24_17.pdf?ver=2017-05-16-080604-047. Accessed 4 Oct 2017
  53. Denner, E. B., Smith, G. W., Busse, H. J., Schumann, P., Narzt, T., Polson, S. W., et al. (2003). Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. International Journal of Systematic and Evolutionary Microbiology, 53(4), 1115–1122.  https://doi.org/10.1099/ijs.0.02359-0.CrossRefGoogle Scholar
  54. DERM (Miami-Dade County Department Environmental Resource Management). (2016). 24 month monitoring of scleractinians relocated from government cut to a natural reef recipient site in association with the Phase 3 Port of Miami/Government Cut deepening project. Resolution R-422-12, Schedule A: Monitoring Project 1. Miami-Dade County Department of Regulatory and Economic Resources, Division of Environmental Resources Management (DERM), Restoration and Enhancement Section (January 2016).Google Scholar
  55. DLNR (Hawaii Department of Land and Natural Resources). (2015). Corals at Kaneohe Bay now impacted by disease. Hawaii Department of Land and Natural Resources Press Release, February 12, 2015. http://dlnr.hawaii.gov/blog/2015/02/12/nr15-023/.  Accessed 15 Feb 2015
  56. Dodge, R. E., & Vaisnys, J. R. (1977). Coral populations and growth patterns: responses to sedimentation and turbidity associated with dredging. Journal of Marine Research, 35(4), 715–730.Google Scholar
  57. Donner, S. D. (2009). Coping with commitment: projected thermal stress on coral reefs under different future scenarios. PLoS One, 4(6), e5712.  https://doi.org/10.1371/journal.pone.0005712 CrossRefGoogle Scholar
  58. Donner, S. D., Heron, S. F., & Skirving, W. J. (2009). Future scenarios: a review of modelling efforts to predict the future of coral reefs in an era of climate change. In Coral bleaching (pp. 159–173). Berlin: Springer.CrossRefGoogle Scholar
  59. DPNR (Department of Parks and Natural Resources, USVI). (2019). Stony coral tissue loss disease: coral disease with high mortality found on coral reefs on St. Thomas, USVI. https://dpnr.vi.gov/czm/sctld/. Accessed 4 Jul 2019.
  60. Dustan, P. (1977). Vitality of reef coral populations off Key Largo, Florida: recruitment and mortality. Environmental Geology, 2, 51–58.CrossRefGoogle Scholar
  61. Dustan, P., & Halas, J. C. (1987). Changes in the reef-coral community of Carysfort Reef, Key Largo, Florida: 1974 to 1982. Coral Reefs, 6(2), 91–106.  https://doi.org/10.1007/BF00301378.CrossRefGoogle Scholar
  62. Eakin, C. M., Morgan, J. A., Heron, S. F., Smith, S., Liu, G., Álvarez-Filip, L., et al. (2010). Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS One, 5, e13969.  https://doi.org/10.1371/journal.pone.0013969.CrossRefGoogle Scholar
  63. Eakin, C. M., Lough, J. M., Heron, S. F., & Liu, G. (2018). Climate variability and change: monitoring data and evidence for increased coral bleaching stress. In M. van Oppen & J. Lough (Eds.), Coral bleaching. Ecological studies (analysis and synthesis) (Vol. 233, pp. 51–84). Cham: Springer.Google Scholar
  64. Elliott, L. P., & Brook, B. W. (2007). Revisiting Chamberlin: multiple working hypotheses for the 21st century. BioScience, 57(7), 608–614.CrossRefGoogle Scholar
  65. Erftemeijer, P. L., Riegl, B., Hoeksema, B. W., & Todd, P. A. (2012). Environmental impacts of dredging and other sediment disturbances on corals: a review. Marine Pollution Bulletin, 64(9), 1737–1765.  https://doi.org/10.1016/j.marpolbul.2012.05.008.CrossRefGoogle Scholar
  66. FDEP (Florida Department Environmental Protection). (2012). Environmental resource permit, Miami Harbor Phase III Federal Channel Expansion Project - FDEP Permit No. 0305721-001-BI. https://www.saj.usace.army.mil/Portals/44/docs/Planning/EnvironmentalBranch/EnviroCompliance/Miami%20Harbor%20Final%20Order%20052212%20508%20compliant.pdf. Accessed 9 Aug 2014
  67. FDEP (Florida Department Environmental Protection). (2019). Florida reef tract coral disease outbreak (2014 – present). https://floridadep.gov/fco/coral/content/florida-reef-tract-coral-disease-outbreak. Accessed 4 Jul 2019.
  68. Filosa, G. (2019). A killer coral disease has reached Key West, scientists say—and it’s not stopping. Miami Herald – Florida Keys (February 1, 2019). https://www.miamiherald.com/news/local/community/florida-keys/article225414770.html.
  69. Finkl, C. W., & Charlier, R. H. (2003). Sustainability of subtropical coastal zones in southeastern Florida: challenges for urbanized coastal environments threatened by development, pollution, water supply, and storm hazards. Journal of Coastal Research, 19, 934–943.Google Scholar
  70. FKNMS (Florida Keys National Marine Sanctuary). (2018). Florida reef tract coral disease outbreak—case definition: stony coral tissue loss disease (SCTLD). October 2, 2018. https://nmsfloridakeys.blob.core.windows.net/floridakeys-prod/media/docs/20181002-stony-coral-tissue-loss-disease-case-definition.pdf. Accessed 4 Nov 2018.
  71. Fleshler, D. (2017). Disease wastes South Florida’s corals, despite end of bleaching. South Florida Sun Sentinel (December 10, 2017). https://www.sun-sentinel.com/news/florida/fl-reg-coral-reef-disease-20171206-story.html.
  72. Foster, T., Smith, A., Jury, M., & Driscoll, A. (2011). Overview of PIANC report 108-dredging and port construction around coral reefs. In Coasts and ports 2011: diverse and developing: Proceedings of the 20th Australasian Coastal and Ocean Engineering Conference and the 13th Australasian Port and Harbour Conference (p. 370). Engineers Australia.Google Scholar
  73. Francini-Filho, R., Reis, R., Meirelles, P., Moura, R., Thompson, F., Kikuchi, R., & Kaufman, L. (2010). Seasonal prevalence of white plague like disease on the endemic Brazilian reef coral Mussismilia braziliensis. Latin American Journal of Aquatic Research, 38(2), 292.CrossRefGoogle Scholar
  74. Freedman, D. A. (1999). Ecological inference and the ecological fallacy. International Encyclopedia of the Social & Behavioral Sciences, 6(4027–4030), 1–7.Google Scholar
  75. Frieler, K., Meinshausen, M., Golly, A., Mengel, M., Lebek, K., Donner, S. D., & Hoegh-Guldberg, O. (2013). Limiting global warming to 20 C is unlikely to save most coral reefs. Nature Climate Change, 3(2), 165.  https://doi.org/10.1038/nclimate1674 CrossRefGoogle Scholar
  76. FRRP (Florida Reef Resilience Program). (2011). FRRP coral bleaching in-water rapid assessment protocol 2011. https://frrp.org/DRM%20Training%20handouts/FRRP%20bleaching%20protocol%202011.pdf. Accessed 9 Aug 2013.
  77. FRRP (Florida Reef Resilience Program). (2014). Disturbance response monitoring quick look report: summer 2014. http://frrp.org/wp-content/uploads/2016/07/2014-Summer-DRM-Quick-Look-Report.pdf. Accessed 4 Nov 2018.
  78. FRRP (Florida Reef Resilience Program). (2015). Disturbance Response Monitoring Quick Look Report: Summer 2015. http://frrp.org/wp-content/uploads/2015/12/2015-Summer-DRM-Quick-Look-Report_vs2.pdf. Accessed 4 Nov 2018.
  79. Gignoux-Wolfsohn, S. A, Precht, W. F., Peters, E. C., Gintert, B. E., & Kaufman, L. S. (2019) The ecology, histopathology, and microbial ecology of a white-band disease outbreak in the threatened staghorn coral, Acropora cervicornis. Diseases of Aquatic Organisms (under review).Google Scholar
  80. Gilliam, D. S. (2012). Southeast Florida coral reef evaluation and monitoring project 2011 Year 9 final report. Florida DEP report #RM085. Miami Beach, FL. pp. 49.Google Scholar
  81. Gilliam, D. S., Walton, C. J, Brinkhuis, V., Ruzicka, R., & Colella, M. (2015). Southeast Florida coral reef evaluation and monitoring project 2014 year 12 final report. Florida DEP report #RM085. Miami Beach, FL. pp. 43.Google Scholar
  82. Gilliam, D. S., Walton, C. J., Brinkhuis, V., Ruzicka, R., & Hayes, N. K. (2016). Southeast Florida coral reef evaluation and monitoring project 2015, year 13 executive summary. Florida DEP Report #RM143-. Miami Beach, FL. 18pp.Google Scholar
  83. Gilliam, D. S., Hayes, N. K., Ruzicka, R., & Colella, M. (2018). Southeast Florida coral reef evaluation and monitoring project 2017, year 15 executive summary. Florida DEP Report #RM143-. Miami Beach, FL. 15pp.Google Scholar
  84. Ginsburg, R. N. (1956). Environmental relationships of grain size and constituent particles in some south Florida carbonate sediments. AAPG Bulletin, 40(10), 2384–2427.Google Scholar
  85. Gleason, D. F. (1998). Sedimentation and distributions of green and brown morphs of the Caribbean coral Porites astreoides Lamarck. Journal of Experimental Marine Biology and Ecology, 230(1), 73–89.CrossRefGoogle Scholar
  86. Goldberg, W. M. (1973). The ecology of the coral-octocoral communities off the southeast Florida coast: geomorphology, species composition, and zonation. Bulletin of Marine Science, 23, 465–488.Google Scholar
  87. Green, R. H., & Smith, S. R. (1997). Sample program design and environmental impact assessment on coral reefs. Proceedings 8th International Coral Reef Symposium, Panama City, 2, 1459–1464.Google Scholar
  88. Green, D. H., Edmunds, P. J., & Carpenter, R. C. (2008). Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. Marine Ecology Progress Series, 359, 1–10.  https://doi.org/10.3354/meps07454  CrossRefGoogle Scholar
  89. Griffin, G. M. (1974). Case history of a typical dredge-fill project in the northern Florida Keys—effects on water clarity, sedimentation rates and biota. Publication 33, Harbor Branch Foundation. http://sunburn.aoml.noaa.gov/general/lib/CEDAR_files/cedar112.pdf. Accessed 6 May 2014
  90. Hansen, J., Kharecha, P., Sato, M., Masson-Delmotte, V., Ackerman, F., Beerling, D. J., et al. (2013). Assessing “dangerous climate change”: required reduction of carbon emissions to protect young people, future generations and nature. PLoS One, 8(12), e81648.  https://doi.org/10.1371/journal.pone.0081648.CrossRefGoogle Scholar
  91. Harding, S., van Bochove, J. W., Day, O., Gibson, K., & Raines, P. (2008). Continued degradation of Tobago’s coral reefs linked to the prevalence of coral disease following the 2005 mass coral bleaching event. Proceedings 11th International Coral Reef Symposium, Fort Lauderdale, 738–741.Google Scholar
  92. Harvell, D., Kim, K., Quirolo, C., Weir, J., & Smith, G. (2001). Coral bleaching and disease: contributors to 1998 mass mortality in Briareum asbestinum (Octocorallia, Gorgonacea). Hydrobiologia, 460(1–3), 97–104.CrossRefGoogle Scholar
  93. Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S., et al. (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 296(5576), 2158–2162.  https://doi.org/10.1126/science.1063699.CrossRefGoogle Scholar
  94. Harvell, D., Jordán-Dahlgren, E., Merkel, S., Rosenberg, E., Raymundo, L., Smith, G., et al. (2007). Coral disease, environmental drivers, and the balance between coral and microbial associates. Oceanography, 20, 172–195.CrossRefGoogle Scholar
  95. Hayes, N.K., Walton, C.J., Brinkhuis, V., Ruzika, R., & Gilliam, D. S. (2017). SECREMP Southeast Florida Coral Reef Evaluation and Monitoring Project. FDEP-CRCP 2017, Research and Academic Learning Exchange. FDEP - Florida Coastal Office (Published on February 2, 2017). https://www.youtube.com/watch?v=3Aj_VIOhJQo&list=PLraw0H6njzME6cabdw1vRg7.
  96. Henriksen, J. C. (2009) Near-field sediment resuspension measurement and modeling for cutter suction dredging operations. PhD dissertation, Texas A&M, College Station, TX.Google Scholar
  97. Heron, S. F., Willis, B. L., Skirving, W. J., Eakin, C. M., Page, C. A., & Miller, I. R. (2010). Summer hot snaps and winter conditions: modelling white syndrome outbreaks on Great Barrier Reef corals. PLoS One, 5(8), e12210.  https://doi.org/10.1371/journal.pone.0012210.CrossRefGoogle Scholar
  98. Heron, S. F., Maynard, J. A., Van Hooidonk, R., & Eakin, C. M. (2016). Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Scientific Reports, 6, 38402.  https://doi.org/10.1038/srep38402.CrossRefGoogle Scholar
  99. Hilborn, R., & Mangel, M. (1997). The ecological detective: confronting models with data. Princeton: Princeton University Press.Google Scholar
  100. Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Marine and Freshwater Research, 50(8), 839–866.CrossRefGoogle Scholar
  101. Hoegh-Guldberg, O., & Bruno, J. F. (2010). The impact of climate change on the world’s marine ecosystems. Science, 328(5985), 1523–1528.  https://doi.org/10.1126/science.1189930.CrossRefGoogle Scholar
  102. Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., et al. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318(5857), 1737–1742.CrossRefGoogle Scholar
  103. Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., Álvarez-Romero, J. G., Anderson, K. D., Baird, A. H., et al. (2017). Global warming and recurrent mass bleaching of corals. Nature, 543(7645), 373–377.  https://doi.org/10.1038/nature21707.CrossRefGoogle Scholar
  104. Hughes, T. P., Anderson, K. D., Connolly, S. R., Heron, S. F., Kerry, J. T., Lough, J. M., et al. (2018). Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science, 359(6371), 80–83.  https://doi.org/10.1126/science.aan8048  CrossRefGoogle Scholar
  105. Jaap, W.C. (1984). The ecology of the south Florida coral reefs: a community profile. FWS OBS-82/08 and MMS 84–0038. (138 pp.) Florida Dept. of Natural Resources, St. Petersburg (USA). Marine Research Lab.Google Scholar
  106. Jones, R. J., Bowyer, J., Hoegh-Guldberg, O., & Blackall, L. L. (2004). Dynamics of a temperature-related coral disease outbreak. Marine Ecology Progress Series, 281, 63–77.CrossRefGoogle Scholar
  107. Kabay, L. B., Gilliam, D. S., & Semon-Lunz, K. (2017). Contributions to the Species Action Plan for the pillar coral, Dendrogyra cylindrus. Research and Academic Learning Exchange, FDEP - Florida Coastal Office Published on February 2, 2017. https://www.youtube.com/watch?v=KCk_mxoDX_8.
  108. Kaczmarsky, L. T., Draud, M., & Williams, E. H. (2005). Is there a relationship between proximity to sewage effluent and the prevalence of coral disease? Caribbean Journal of Science, 41, 124–137.Google Scholar
  109. Kemp, K. M., Westrich, J. R., Alabady, M. S., Edwards, M. L., & Lipp, E. K. (2018). Abundance and multilocus sequence analysis of Vibrio bacteria associated with diseased elkhorn coral (Acropora palmata) of the Florida Keys. Applied Environmental Microbiology, 84, e01035–e01017.  https://doi.org/10.1128/AEM.01035-17.CrossRefGoogle Scholar
  110. Kuffner, I. B., & Toth, L. T. (2016). A geological perspective on the degradation and conservation of western Atlantic coral reefs. Conservation Biology, 30(4), 706–715.  https://doi.org/10.1111/cobi.12725.CrossRefGoogle Scholar
  111. Kuffner, I. B., Lidz, B. H., Hudson, J. H., & Anderson, J. S. (2015). A century of ocean warming on Florida Keys coral reefs: historic in situ observations. Estuaries and Coasts, 38(3), 1085–1096.  https://doi.org/10.1007/s12237-014-9875-5 CrossRefGoogle Scholar
  112. Lamb, J. B., Wenger, A. S., Devlin, M. J., Ceccarelli, D. M., Williamson, D. H., & Willis, B. L. (2016). Reserves as tools for alleviating impacts of marine disease. Philosophical Transactions of the Royal Society B, 371(1689), 20150210  https://doi.org/10.1098/rstb.2015.0210.CrossRefGoogle Scholar
  113. Lasker, H. R. (1980). Sediment rejection by reef corals: the roles of behavior and morphology in Montastrea cavernosa (Linnaeus). Journal of Experimental Marine Biology and Ecology, 47(1), 77–87.CrossRefGoogle Scholar
  114. Lessios, H. A. (2016). The great Diadema antillarum die-off: 30 years later. Annual Review Marine Science, 8, 267–283.  https://doi.org/10.1146/annurev-marine-122414-033857.CrossRefGoogle Scholar
  115. Lewis, C. L., Neely, K. L., Richardson, L. L., & Rodriguez-Lanetty, M. (2017). Temporal dynamics of black band disease affecting pillar coral (Dendrogyra cylindrus) following two consecutive hyperthermal events on the Florida reef tract. Coral Reefs, 36(2), 427–431.  https://doi.org/10.1007/s00338-017-1545-1.CrossRefGoogle Scholar
  116. Lighty, R. G., Macintyre, I. G., & Stuckenrath, R. (1978). Submerged early Holocene barrier reef south-east Florida shelf. Nature, 276(5683), 59.CrossRefGoogle Scholar
  117. Lough, J. M., Anderson, K. D., & Hughes, T. P. (2018). Increasing thermal stress for tropical coral reefs: 1871–2017. Scientific Reports, 8(1), 6079.  https://doi.org/10.1038/s41598-018-24530-9
  118. Loya, Y., Sakai, K., Yamazato, K., Nakano, Y., Sambali, H., & Van Woesik, R. (2001). Coral bleaching: the winners and the losers. Ecology Letters, 4(2), 122–131.CrossRefGoogle Scholar
  119. Lubofsky, E. (2019). Virgin Island corals in crisis: fast-spreading coral disease ravages reefs of St. Thomas. Woods Hole Oceanographic Institution (May 7, 2019). https://www.whoi.edu/news-insights/content/virgin-island-corals-in-crisis/.
  120. Lunz, K., Landsberg, J., Kiryu, Y., & Brinkhuis, V. (2017). Investigation of the coral disease outbreak affecting Scleractinian corals of the Florida reef tract. Miami: Florida DEP https://floridadep.gov/fco/coral/content/florida-reef-tract-coral-disease-outbreak. Accessed 4 Nov 2017
  121. Manzello, D. P. (2015). Rapid recent warming of coral reefs in the Florida Keys. Scientific Reports, 5, 16762.  https://doi.org/10.1038/srep16762.CrossRefGoogle Scholar
  122. Manzello, D. P., Berkelmans, R., & Hendee, J. C. (2007). Coral bleaching indices and thresholds for the Florida reef tract, Bahamas, and St. Croix, US Virgin Islands. Marine Pollution Bulletin, 54, 1923–1931.  https://doi.org/10.1016/j.marpolbul.2007.08.009.CrossRefGoogle Scholar
  123. Mao-Jones, J., Ritchie, K. B., Jones, L. E., & Ellner, S. P. (2010). How microbial community composition regulates coral disease development. PLoS Biology, 8(3), e1000345.  https://doi.org/10.1371/journal.pbio.1000345 CrossRefGoogle Scholar
  124. Marella, R. L. (1998) Water-quality assessment of southern Florida—wastewater discharges and runoff. USGS National Water-Quality Assessment Program, USGS Fact Sheet FS–032–98.Google Scholar
  125. Marszalek, D. S. (1982). Impact of dredging on a subtropical reef community, southeast Florida, U.S.A. Proceedings 4th International Coral Reef Symposium, Manilla, 1, 147–153.Google Scholar
  126. Martin, C. (2019). A mysterious coral disease is ravaging Caribbean reefs. Science News (July 9, 2019). https://www.sciencenews.org/article/mysterious-coral-disease-ravaging-caribbean-reefs.
  127. Maynard, J., Van Hooidonk, R., Eakin, C. M., Puotinen, M., Garren, M., Williams, G., et al. (2015). Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nature Climate Change, 5(7), 688.  https://doi.org/10.1038/NCLIMATE2625.CrossRefGoogle Scholar
  128. Maynard, J., Byrne, J., Kerrigan, K., Tracey, D., Bohnsack, K., Pagan, F., et al. (2017). Coral reef resilience to climate change in the Florida reef tract (pp. 1–30). Miami: Florida Department of Environmental Protection https://floridadep.gov/fco/coral/content/florida-reef-tract-coral-disease-outbreak. Accessed 4 Nov 2017
  129. Mayor, A. G. (1915). The lower temperature at which reef-corals lose their ability to capture food. Carnegie Institute Yearbook, 14, 212.Google Scholar
  130. Menza, C., Kendall, M., Rogers, C., & Miller, J. (2007). A deep reef in deep trouble. Continental Shelf Research, 27(17), 2224–2230.CrossRefGoogle Scholar
  131. Mera, H., & Bourne, D. G. (2018). Disentangling causation: complex roles of coral-associated microorganisms in disease. Environmental Microbiology, 20(2), 431–449.  https://doi.org/10.1111/1462-2920.13958.CrossRefGoogle Scholar
  132. Merselis, D. G., Lirman, D., & Rodriguez-Lanetty, M. (2018). Symbiotic immuno-suppression: is disease susceptibility the price of bleaching resistance? PeerJ, 6, e4494.  https://doi.org/10.7717/peerj.4494.CrossRefGoogle Scholar
  133. Meyer, J. L., Castellanos-Gell, J., Aeby, G. S., Häse, C., Ushijima, B., & Paul, V. J. (2019). Microbial community shifts associated with the ongoing stony coral tissue loss disease outbreak on the Florida reef tract. bioRxiv, 626408.  https://doi.org/10.1101/626408.
  134. Miller, M., & Precht, W. F. (2013). Climate change impacts on South Florida coral reefs. In Predicting ecological changes in the Florida Everglades under a future climate scenario, USGS/CES Meeting, Florida Atlantic University, Boca Raton (February 2013) http://www.ces.fau.edu/files/projects/climate_change/ecology_february_2013/10_Miller.pdf. Accessed 26 Dec 2013
  135. Miller, A. W., & Richardson, L. L. (2015). Emerging coral diseases: a temperature-driven process? Marine Ecology, 36(3), 278–291.  https://doi.org/10.1111/maec.12142 CrossRefGoogle Scholar
  136. Miller, M. W., & Williams, D. E. (2007). Coral disease outbreak at Navassa, a remote Caribbean island. Coral Reefs, 26, 97–101.  https://doi.org/10.1007/s00338-006-0165-y.CrossRefGoogle Scholar
  137. Miller, J., Rogers, C., & Waara, R. (2003). Monitoring the coral disease, plague type II, on coral reefs in St. John, US Virgin Islands. Revista de Biologia Tropical, 51(Suppl 4), 47–55.Google Scholar
  138. Miller, J., Waara, R., Muller, E., & Rogers, C. (2006). Coral bleaching and disease combine to cause extensive mortality on reefs in US Virgin Islands. Coral Reefs, 25, 418.  https://doi.org/10.1007/s00338-006-0125-6.CrossRefGoogle Scholar
  139. Miller, J., Muller, E., Rogers, C., Waara, R., Atkinson, A., Whelan, K. R. T., et al. (2009). Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. Coral Reefs, 28(4), 925–937.  https://doi.org/10.1007/s00338-009-0531-7.CrossRefGoogle Scholar
  140. Miller, M. W., Karazsia, J., Groves, C. E., Griffin, S., Moore, T., Wilber, P., et al. (2016). Detecting sedimentation impacts to coral reefs resulting from dredging the PortMiami, Florida USA. PeerJ, 4, e2711.  https://doi.org/10.7717/peerj.2711.CrossRefGoogle Scholar
  141. Morrow, K. M., Moss, A. G., Chadwick, N. E., & Liles, M. R. (2012). Bacterial associates of two Caribbean coral species reveal species-specific distribution and geographic variability. Applied and Environmental Microbiology, 78(18), 6438–6449.  https://doi.org/10.1128/AEM.01162-12.CrossRefGoogle Scholar
  142. Moulding, A., & Patterson, M. (2002). Biscayne National Park coral reef inventory and monitoring project. Final report (National Park Service). Homestead.Google Scholar
  143. Muñiz-Castillo, A. I., Rivera-Sosa, A., Chollett, I., Eakin, C. M., Andrade-Gómez, L., McField, M., et al. (2019). Three decades of heat stress exposure in Caribbean coral reefs: a new regional delineation to enhance conservation. Scientific Reports, 9(1), 11013.  https://doi.org/10.1038/s41598-019-47307-0.CrossRefGoogle Scholar
  144. Mydlarz, L. D., Couch, C. S., Weil, E., Smith, G., & Harvell, C. D. (2009). Immune defenses of healthy, bleached and diseased Montastraea faveolata during a natural bleaching event. Diseases of Aquatic Organisms, 87(1–2), 67–78.  https://doi.org/10.3354/dao02088 CrossRefGoogle Scholar
  145. Neely, K. (2018). Surveying the Florida Keys southern coral disease boundary. Miami: Florida DEP https://floridadep.gov/sites/default/files/Southern-Coral-Disease-Boundary-Survey-Summary.pdf. Accessed 8 Dec 2018
  146. NOAA (National Oceanic Atmospheric Administration). (2014a). Coral reef watch bleaching alert, Florida. http://coralreefwatch.noaa.gov/satellite/regions/florida.php. Accessed 26 Dec 2014
  147. NOAA (National Oceanic Atmospheric Administration). (2014b). 2014 surprisingly rough on coral reefs, and El Niño looms in 2015. https://www.climate.gov/news-features/featured-images/2014-surprisingly-rough-coral-reefs-and-el-ni%C3%B1o-looms-2015. Accessed 26 Dec 2014
  148. NOAA (National Oceanic Atmospheric Administration). (2015a). Coral reef watch: global bleaching update http://coralreefwatch.noaa.gov/satellite/analyses_guidance/global_bleaching_update_20 150602.php.
  149. NOAA (National Oceanic Atmospheric Administration). (2015b). Coral reef watch—2014 annual summaries of thermal conditions related to coral bleaching for U.S. National Coral Reef Monitoring Program (NCRMP) jurisdictions. https://coralreefwatch.noaa.gov/satellite/analyses_guidance/2014_annual_summaries_thermal_stress_conditions_NCRMP.pdf. Accessed 8 Dec 2015
  150. NOAA (National Oceanic Atmospheric Administration). (2015c). NOAA declares third ever global coral bleaching event. http://www.noaanews.noaa.gov/stories2015/100815-noaa-declares-third-ever-global-coral-bleaching-event.html. Accessed 8 Dec 2015
  151. NOAA (National Oceanic Atmospheric Administration). (2018a). Station VAKF1 – Virginia Key Station, Virginia Key, FL, Coastal Marine Automated Network, National Data Buoy Center. http://www.ndbc.noaa.gov/station_page.php?station=vakf1. Accessed 4 Nov 2018.
  152. NOAA (National Oceanic Atmospheric Administration). (2018b). NOAA. Station FWYF1 -- Fowey Rock, FL, Coastal Marine Automated Network, National Data Buoy Center. https://www.ndbc.noaa.gov/station_page.php?station=fwyf1. Accessed 4 Nov 2018.
  153. Nugues, M. M. (2002). Impact of a coral disease outbreak on coral communities in St. Lucia: what and how much has been lost? Marine Ecology Progress Series, 229, 61–71.  https://doi.org/10.3354/meps229061 CrossRefGoogle Scholar
  154. Obura, D., & Mangubhai, S. (2011). Coral mortality associated with thermal fluctuations in the Phoenix Islands, 2002–2005. Coral Reefs, 30(3), 607–619.  https://doi.org/10.1007/s00338-011-0741-7 CrossRefGoogle Scholar
  155. Oswald, M. E., & Grosjean, S. (2004). Confirmation bias. In R. F. Pohl (Ed.), Cognitive illusions: a handbook on fallacies and biases in thinking, judgement and memory (pp. 79–96). New York: Psychology Press.Google Scholar
  156. Palmer, C. V., McGinty, E. S., Cummings, D. J., Smith, S. M., Bartels, E., & Mydlarz, L. D. (2011). Patterns of coral ecological immunology: variation in the responses of Caribbean corals to elevated temperature and a pathogen elicitor. Journal of Experimental Biology, 214, 4240–4249.  https://doi.org/10.1242/jeb.061267.CrossRefGoogle Scholar
  157. Pandolfi, J. M., Jackson, J. B., Baron, N., Bradbury, R. H., Guzman, H. M., Hughes, T. P., et al. (2005). Are US coral reefs on the slippery slope to slime? Science, 307, 1725–1726.CrossRefGoogle Scholar
  158. Pante, E., King, A., & Dustan, P. (2008). Short-term decline of a Bahamian patch reef coral community: Rainbow Gardens Reef 1991–2004. Hydrobiologia, 596(1), 121-132.  https://doi.org/10.1007/s10750-007-9062-9 CrossRefGoogle Scholar
  159. Pantos, O., Cooney, R. P., Le Tissier, M. D. A., Barer, M. R., O’Donnell, A. G., & Bythell, J. C. (2003). The bacterial ecology of a plague-like disease affecting the Caribbean coral Montastrea annularis. Environmental Microbiology, 5, 370–382.CrossRefGoogle Scholar
  160. Perry, C. T., Steneck, R. S., Murphy, G. N., Kench, P. S., Edinger, E. N., Smithers, S. G., et al. (2015). Regional-scale dominance of non-framework building corals on Caribbean reefs affects carbonate production and future reef growth. Global Change Biology, 21(3), 1153–1164.CrossRefGoogle Scholar
  161. Peters, E. C., & Pilson, M. E. (1985). A comparative study of the effects of sedimentation on symbiotic and asymbiotic colonies of the coral Astrangia danae Milne Edwards and Haime 1849. Journal of Experimental Marine Biology and Ecology, 92(2–3), 215–230.CrossRefGoogle Scholar
  162. Pinzón, J. H., Beach-Letendre, J., Weil, E., & Mydlarz, L. D. (2014). Relationship between phylogeny and immunity suggests older Caribbean coral lineages are more resistant to disease. PLoS One, 9(8), e104787.  https://doi.org/10.1371/journal.pone.0104787.CrossRefGoogle Scholar
  163. Pinzón, J. H., Kamel, B., Burge, C. A., Harvell, C. D., Medina, M., Weil, E., et al. (2015). Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. Royal Society Open Science, 2, 140214.  https://doi.org/10.1098/rsos.140214.CrossRefGoogle Scholar
  164. Plowright, R. K., Sokolow, S. H., Gorman, M. E., Daszak, P., & Foley, J. E. (2008). Causal inference in disease ecology: investigating ecological drivers of disease emergence. Frontiers in Ecology and the Environment, 6(8), 420–429.  https://doi.org/10.1890/070086 CrossRefGoogle Scholar
  165. Pollock, F. J., Lamb, J. B., Field, S. N., Heron, S. F., Schaffelke, B., Shedrawi, G., et al. (2014). Sediment and turbidity associated with offshore dredging increase coral disease prevalence on nearby reefs. PLoS One, 9(7), e102498.  https://doi.org/10.1371/journal.pone.0102498.CrossRefGoogle Scholar
  166. Precht, W. F. (2016). Can coral reefs survive large-scale dredging projects? Portside Caribbean, 1(6), 26–27 http://www.kelmanonline.com/httpdocs/files/PMAC/portsidecaribbean-june2016/index.html.Google Scholar
  167. Precht, W. F. (2019). Failure to respond to a coral disease outbreak: potential costs and consequences. PeerJ Preprints, e27860v2.  https://doi.org/10.7287/peerj.preprints.27860v2.
  168. Precht, W. F., & Aronson, R. B. (2004). Climate flickers and range shifts of reef corals. Frontiers in Ecology and the Environment, 6, 307–313.  https://doi.org/10.1890/1540-9295(2004)002[0307:CFARSO]2.0.CO;2.CrossRefGoogle Scholar
  169. Precht, W. F., & Miller, S. L. (2007). Ecological shifts along the Florida reef tract: The past as a key to the future. In R. B. Aronson (Ed.), Geological approaches to coral reef ecology (pp. 237–312). New York: Springer.CrossRefGoogle Scholar
  170. Precht, W. F., Robbart, M. L., & Aronson, R. B. (2004). The potential listing of Acropora species under the US Endangered Species Act. Marine Pollution Bulletin, 49(7–8), 534–536.  https://doi.org/10.1016/j.marpolbul.2004.08.017 CrossRefGoogle Scholar
  171. Precht, W. F., Miller, S. L., Aronson, R. B., Bruno, J. B., & Kaufman, L. (2005). Reassessing U.S. coral reefs. Science, 308, 1741.  https://doi.org/10.1126/science.308.5729.1740c CrossRefGoogle Scholar
  172. Precht, W. F., Gintert, B. E., Robbart, M. L., Fura, R., & van Woesik, R. (2016). Unprecedented disease-related coral mortality in southeastern Florida. Scientific Reports, 6, 31374.  https://doi.org/10.1038/srep31374.CrossRefGoogle Scholar
  173. Precht, L., Thanner, S., Peters, E., Rogers, K., Kaufman, L., Aronson, B., et al. (2018a). Emerging coral disease threatens ailing Caribbean reefs. ECO Magazine (March 2018 Issue) https://www.ecomagazine.com/news/science/emerging-coral-disease-threatens-ailing-caribbean-reefs.
  174. Precht, W., Gintert, B., Fura, R., Precht, W., Rogers, K., & Robbart, M. (2018b). Coral disease ravages reef-building corals throughout Southeast Florida. Inside Ecology (April 5, 2018) https://insideecology.com/2018/04/05/coral-disease-ravages-reef-building-corals-throughoutsoutheast-florida/.
  175. Precht, W. F., Gintert, B., Fura, R., Rogers, K., Robbart, M., & Dial, S. (2019). Miami harbor deep dredge project: a reappraisal reveals same results. WEDA Dredging Summit & Expo ‘19 Proceedings, Chicago, IL (June 2019) https://www.researchgate.net/profile/William_Precht/publication/333666959_MIAMI_HARBOR_DEEP_DREDGE_PROJECT_A_REAPPRAISAL_REVEALS_SAME_RESULTS/links/5cfc4f69299bf13a38489202/MIAMI-HARBOR-DEEP-DREDGE-PROJECT-A-REAPPRAISALREVEALS-SAME-RESULTS.pdf.
  176. Quinn, J. F., & Dunham, A. E. (1983). On hypothesis testing in ecology and evolution. The American Naturalist, 122(5), 602–617.CrossRefGoogle Scholar
  177. “R Core Team.” (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,Austria. http://www.R-project.org/
  178. Randall, C. J., & van Woesik, R. (2015). Contemporary white-band disease in Caribbean corals driven by climate change. Nature Climate Change, 5, 375–379.  https://doi.org/10.1038/NCLIMATE2530.CrossRefGoogle Scholar
  179. Randall, C. J., & van Woesik, R. (2017). Some coral diseases track climate oscillations in the Caribbean. Scientific Reports, 7(1), 5719.  https://doi.org/10.1038/s41598-017-05763-61.CrossRefGoogle Scholar
  180. Randall, C. J., Jordán-Garza, A. G., Muller, E. M., & Van Woesik, R. (2014). Relationships between the history of thermal stress and the relative risk of diseases of Caribbean corals. Ecology, 95, 1981–1994.  https://doi.org/10.1890/13-0774.1.CrossRefGoogle Scholar
  181. Reed, K. C., Muller, E. M., & van Woesik, R. (2010). Coral immunology and resistance to disease. Diseases of Aquatic Organisms, 90, 85–92.  https://doi.org/10.3354/dao02213.CrossRefGoogle Scholar
  182. Richardson, L.L., & Aronson, R.B. (2002). Infectious diseases of reef corals. Proceedings of the 9 th International Coral Reef Symposium, Bali, 2, 1225–1230.Google Scholar
  183. Richardson, L. L., & Voss, J. D. (2005). Changes in a coral population on reefs of the northern Florida Keys following a coral disease epizootic. Marine Ecology Progress Series, 297, 147–156.CrossRefGoogle Scholar
  184. Richardson, L. L., Goldberg, W. M., Carlton, R. G., & Halas, J. C. (1998a). Coral disease outbreak in the Florida Keys: plague type II. Revista de Biologia Tropical, 46, 187–198.Google Scholar
  185. Richardson, L. L., Goldberg, W. M., Kuta, K. G., Aronson, R. B., Smith, G. W., et al. (1998b). Florida’s mystery coral-killer identified. Nature, 393, 557–558.CrossRefGoogle Scholar
  186. Riegl, B., & Branch, G. M. (1995). Effects of sediment on the energy budgets of four scleractinian (Bourne 1900) and five alcyonacean (Lamouroux 1816) corals. Journal of Experimental Marine Biology and Ecology, 186(2), 259–275.CrossRefGoogle Scholar
  187. Rippe, J. P., Kriefall, N. G., Davies, S. W., & Castillo, K. D. (2018). Differential disease incidence and mortality of inner and outer reef corals of the upper Florida Keys in association with a white syndrome outbreak. Bulletin of Marine Science (Published on-line December 2018).  https://doi.org/10.5343/bms.2018.0034.CrossRefGoogle Scholar
  188. Roder, C., Arif, C., Bayer, T., Aranda, M., Daniels, C., Shibl, A., et al. (2014a). Bacterial profiling of white plague disease in a comparative coral species framework. The ISME Journal, 8(1), 31–39.  https://doi.org/10.1038/ismej.2013.127.CrossRefGoogle Scholar
  189. Roder, C., Arif, C., Daniels, C., Weil, E., & Voolstra, C. R. (2014b). Bacterial profiling of white plague disease across corals and oceans indicates a conserved and distinct disease microbiome. Molecular Ecology, 23(4), 965–974.  https://doi.org/10.1111/mec.12638.CrossRefGoogle Scholar
  190. Rogers, C. S. (1983). Sublethal and lethal effects of sediments applied to common Caribbean reef corals in the field. Marine Pollution Bulletin, 14(10), 378–382.CrossRefGoogle Scholar
  191. Rogers, C. (2009). Coral bleaching and disease should not be underestimated as causes of Caribbean coral reef decline. Proceedings of the Royal Society of London B: Biological Sciences, 276(1655), 197–198.  https://doi.org/10.1098/rspb.2008.0606 CrossRefGoogle Scholar
  192. Rogers, C. S. (2010). Words matter: recommendations for clarifying coral disease nomenclature and terminology. Diseases of Aquatic Organisms, 91(2), 167–175.  https://doi.org/10.3354/dao02261.CrossRefGoogle Scholar
  193. Rogers, C. S., Muller, E., Spitzack, T., & Miller, J. (2009). Extensive coral mortality in the US Virgin Islands in 2005/2006: a review of the evidence for synergy among thermal stress, coral bleaching and disease. Caribbean Journal of Science, 45, 204–214.CrossRefGoogle Scholar
  194. Roy, R. E. (2004). Akumal’s reefs: stony coral communities along the developing Mexican Caribbean coastline. Revista de Biología Tropical, 52(4), 869–881.Google Scholar
  195. Ruiz-Morenol, D., Willis, B. L., Page, A. C., Weil, E., Cróquer, A., Vargas-Angel, B., et al. (2012). Global coral disease prevalence associated with sea temperature anomalies and local factors. Diseases of Aquatic Organisms, 100, 249–261.  https://doi.org/10.3354/dao02488  CrossRefGoogle Scholar
  196. Ruzicka, R. (2018). Brief overview and preliminary synopsis of coral loss due to the coral disease outbreak in SE FL and Florida Keys – CREMP & SECREMP results. https://floridadep.gov/fco/coral/content/florida-reef-tract-coral-disease-outbreak. Accessed 8 Dec 2018
  197. Sánchez, J. A., Herrera, S., Navas-Camacho, R., Rodríguez-Ramírez, A., Herron, P., Pizarro, V., et al. (2010). White plague-like coral disease in remote reefs of the western Caribbean. Revista de Biologia Tropical, 58, 145–154.CrossRefGoogle Scholar
  198. Schmidt, C. W. (2008). In hot water—global warming takes its toll on coral reefs. Environmental Health Perspectives, 116(7), A292–A299.  https://doi.org/10.1289/ehp.116-a292.CrossRefGoogle Scholar
  199. Selig, E. R., Drew Harvell, C., Bruno, J. F., Willis, B. L., Page, C. A., Casey, K. S., et al. (2006). Analyzing the relationship between ocean temperature anomalies and coral disease outbreaks at broad spatial scales. In J. T. Phinney, O. Hoegh-Guldberg, J. Kleypas, W. Skirving, & A. Strong (Eds.), Coral reefs and climate change: science and management (pp. 111–128). Washington, DC: American Geophysical Union.CrossRefGoogle Scholar
  200. Silverstein, R. (2015). Port expansion damaged unique coral reefs. Op-Ed, Miami Herald, September 20, 2015. https://www.miamiherald.com/opinion/op-ed/article36067368.html. Accessed 4 Oct 2015.
  201. Smith, F. W. (1943). Littoral fauna of the Miami area. I. The Madreporapia. Proceedings of the Florida Academy of Sciences, 6(1), 41–48.Google Scholar
  202. Smith, T. B., Brandt, M. E., Calnan, J. M., Nemeth, R. S., Blondeau, J., Kadison, E., et al. (2013). Convergent mortality responses of Caribbean coral species to seawater warming. Ecosphere, 4, 87–98.  https://doi.org/10.1890/ES13-00107.1.CrossRefGoogle Scholar
  203. Soffer, N., Brandt, M. E., Correa, A. M., Smith, T. B., & Thurber, R. V. (2014). Potential role of viruses in white plague coral disease. The ISME Journal, 8, 271–283.  https://doi.org/10.1038/ismej.2013.137.CrossRefGoogle Scholar
  204. Sokolow, S. (2009). Effects of a changing climate on the dynamics of coral infectious disease: a review of the evidence. Diseases of Aquatic Organisms, 87(1–2), 5–18.  https://doi.org/10.3354/dao02099  CrossRefGoogle Scholar
  205. Sokolow, S. H., Foley, P., Foley, J. E., Hastings, A., & Richardson, L. L. (2009). Editor’s choice: Disease dynamics in marine metapopulations: modelling infectious diseases on coral reefs. Journal of Applied Ecology, 46(3), 621–631.  https://doi.org/10.1111/j.1365-2664.2009.01649.x CrossRefGoogle Scholar
  206. Spring, K.D., & Hodell, E. (2011). Key West Harbor dredging project resource monitoring. Ocean News & Technology (November/December 2011), 17(10), 34–35. http://digital.oceannews.com/publication/?i=89368&article_id=898768&view=articleBrowser&ver=html5#{"issue_id":89368,"view":"articleBrowser","article_id":"898768"}.
  207. Stafford-Smith, M. G. (1993). Sediment-rejection efficiency of 22 species of Australian scleractinian corals. Marine Biology, 115(2), 229–243.CrossRefGoogle Scholar
  208. Staletovich, J. (2015a). Biscayne Bay coral at risk from sloppy dredge work. Miami HeraldEnvironment (February 05, 2015). http://www.miamiherald.com/news/local/community/miamidade/article9356072.html.
  209. Staletovich, J. (2015b). PortMiami dredge damages more coral than feds expected. Miami HeraldEnvironment (August 17, 2015). http://www.miamiherald.com/news/local/environment/article31350266.html.
  210. Staletovich, J. (2016a) Corps says disease, not dredging, hurt PortMiami coral. Miami HeraldEnvironment (February 1, 2016). https://www.miamiherald.com/news/local/environment/article57756768.html.
  211. Staletovich, J. (2016b) Mud from PortMiami dredge spurred coral dieoff, study finds. Miami HeraldEnvironment (November 21, 2016). http://www.miamiherald.com/news/local/environment/article116312178.html.
  212. Staletovich, J. (2017) Miami’s sewage is supposed to be pumped offshore but the pipe has sprung a leak. Miami HeraldEnvironment (July 31, 2017). https://www.miamiherald.com/news/local/environment/article164655777.html.
  213. Staley, C., Kaiser, T., Gidley, M. L., Enochs, I. C., Jones, P. R., Goodwin, K. D., et al. (2017). Differential impacts of land-based sources of pollution on the microbiota of southeast Florida coral reefs. Applied Environmental Microbiology, 83, e03378–e03316.  https://doi.org/10.1128/AEM.03378-16.CrossRefGoogle Scholar
  214. Stoddart, J., Jones, R., Page, C., Marnane, M., De Lestang, P., & Elsdon, T. (2019). No effect of dredging on the prevalence of coral disease detected during a large dredging program. Marine Pollution Bulletin, 140, 353–363.  https://doi.org/10.1016/j.marpolbul.2019.01.047 CrossRefGoogle Scholar
  215. Sunagawa, S., DeSantis, T. Z., Piceno, Y. M., Brodie, E. L., DeSalvo, M. K., Voolstra, C. R., et al. (2009). Bacterial diversity and white plague disease-associated community changes in the Caribbean coral Montastraea faveolata. The ISME Journal, 3(5), 512–521.  https://doi.org/10.1038/ismej.2008.131.CrossRefGoogle Scholar
  216. Sutherland, K. P., Porter, J. W., & Torres, C. (2004). Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Marine Ecology Progress Series, 266, 273–302.CrossRefGoogle Scholar
  217. Symonds, E. M., Sinigalliano, C., Gidley, M., Ahmed, W., McQuaig-Ulrich, S. M., & Breitbart, M. (2016). Faecal pollution along the southeastern coast of Florida and insight into the use of pepper mild mottle virus as an indicator. Journal of Applied Microbiology, 121(5), 1469–1481.  https://doi.org/10.1111/jam.13252.CrossRefGoogle Scholar
  218. Talbot, R. (2019). As disease ravages coral reefs, scientists scramble for solutions. Yale Environment 360. (January 10, 2019). https://e360.yale.edu/features/as-disease-ravages-coralreefs-scientists-scramble-for-solutions.
  219. TNC (The Nature Conservancy). (2015). Florida reef resilience program report confirms prevalence of coral disease and bleaching. The Nature Conservancy (November 25, 2015). https://results.inbox.com/serp?q=Florida+Reef+Resilience+Program+Report+Confirms+Prevalence+of+Coral+Disease+and+Bleaching.
  220. Toth, L. T., Stathakopoulos, A., Kuffner, I. B., Ruzicka, R. R., Collela, M. A., & Shinn, E. A. (2019). The unprecedented loss of Florida’s reef-building corals and the emergence of a novel coral-reef assemblage. Ecology, e02781.  https://doi.org/10.1002/ecy.2781
  221. UN (United Nations). (2015). United Nations Framework Convention on Climate Change - Conference of the Parties, Twenty-first session Paris, 30 November to 11 December 2015 (COP21). https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf. Accessed 26 Dec 2015
  222. Underwood, A. J. (1997). Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge: Cambridge University Press 509pp.Google Scholar
  223. USACE (U.S. Army Corps of Engineers). (1975). Final environmental impact statement beach erosion control and hurricane surge protection project Dade County, Florida. Jacksonville District: USACE.Google Scholar
  224. USACE (U.S. Army Corps of Engineers). (2004). Final environmental Impact statement for the Miami Harbor. Jacksonville District: USACE.Google Scholar
  225. USACE (U.S. Army Corps of Engineers). (2012). Coral hardbottom monitoring. In RFP No. W912EP-12-R-0013 Construction Dredging (Phase 3) Miami Harbor, Miami-Dade County, Florida. Jacksonville District: USACE.Google Scholar
  226. USACE (U.S. Army Corps of Engineers). (2018). Navigation projects - Miami Harbor deepening. Jacksonville District: USACE http://www.saj.usace.army.mil/Missions/Civil-Works/Navigation/Navigation-Projects/Miami-Harbor-Deepening/. Accessed 4 Nov 2018.Google Scholar
  227. van de Water, J. A., Lamb, J. B., Heron, S. F., van Oppen, M. J., & Willis, B. L. (2016). Temporal patterns in innate immunity parameters in reef-building corals and linkages with local climatic conditions. Ecosphere, 7(11), e01505.CrossRefGoogle Scholar
  228. van Hooidonk, R., Maynard, J., Tamelander, J., Gove, J., Ahmadia, G., Raymundo, L., et al. (2016). Local-scale projections of coral reef futures and implications of the Paris Agreement. Scientific Reports, 6, 39666.  https://doi.org/10.1038/srep39666.CrossRefGoogle Scholar
  229. van Woesik, R., Sakai, K., Ganase, A., & Loya, Y. (2011). Revisiting the winners and the losers a decade after coralbleaching. Marine Ecology Progress Series, 434, 67–76.CrossRefGoogle Scholar
  230. van Woesik, R., Scott, W. J., IV, & Aronson, R. B. (2014). Lost opportunities: coral recruitment does not translate to reef recovery in the Florida Keys. Marine Pollution Bulletin, 88(1–2), 110–117.CrossRefGoogle Scholar
  231. Vaughan, T. W. (1914). Investigations of the geology and geologic processes of the reef tracts and adjacent areas of the Bahamas and Florida. Carnegie Institute Washington Yearbook., 12, 1–183.Google Scholar
  232. Vaughn, C. C., Taylor, C. M., & Eberhard, K. J. (1995). A comparison of the effectiveness of timed searches vs. quadrat sampling in mussel surveys. In K. S. Cummings, A. C. Buchanan, C. A. Mayer, & T. J. Naimo (Eds.), Conservation and management of freshwater mussels II: initiatives for the future (pp. 16–18) Proceedings of an Upper Mississippi River Conservation Committee Symposium.Google Scholar
  233. Vega Thurber, R.L., Burkepile, D.E., Fuchs, C., Shantz, A.A., McMinds, R., & Zaneveld, J.R. (2014). Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Global Change Biology, 20(2), pp.544–554.  https://doi.org/10.1111/gcb.12450 CrossRefGoogle Scholar
  234. Walker, B. K. (2012). Spatial analyses of benthic habitats to define coral reef ecosystem regions and potential biogeographic boundaries along a latitudinal gradient. PLoS One, 7(1), e30466 10.1371/journal.pone.0030466.CrossRefGoogle Scholar
  235. Walker, B. (2018). Southeast Florida reef-wide post-Irma coral disease surveys. Miami: Florida DEP https://floridadep.gov/fco/coral/documents/southeast-florida-reef-wide-post-irma-coral-disease-surveys. Accessed 8 Dec 2018
  236. Walker, B. K., & Klug, K. (2014). Southeast Florida shallow-water habitat mapping & coral reef community characterization. Florida DEP Coral Reef Conservation Program Report, https://nsuworks.nova.edu/occ_facreports/87. Accessed 9 Aug 2014
  237. Walton, C. J., Hayes, N. K., & Gilliam, D. S. (2018). Impacts of a regional, multi-year, multi-species coral disease outbreak in Southeast Florida. Frontiers in Marine Science, 5, 323.  https://doi.org/10.3389/fmars.2018.00323.CrossRefGoogle Scholar
  238. Ward, J. R., Kim, K., & Harvell, C. D. (2007). Temperature affects coral disease resistance and pathogen growth. Marine Ecology Progress Series, 329, 115–121.CrossRefGoogle Scholar
  239. Wear, S. L., & Thurber, R. V. (2015). Sewage pollution: mitigation is key for coral reef stewardship. Annals of the New York Academy of Sciences, 1355(1), 15–30.  https://doi.org/10.1111/nyas.12785 CrossRefGoogle Scholar
  240. Weil, E., & Rogers, C. S. (2011). Coral reef diseases in the Atlantic-Caribbean. In Z. Dubinsky & N. Stambler (Eds.), Coral reefs: an ecosystem in transition (pp. 465–491). Dordrecht: Springer.  https://doi.org/10.1007/978-94-007-0114-4_27.CrossRefGoogle Scholar
  241. Weil, E., Urreiztieta, I., & Garzon-Ferreira, J. (2002) Geographic variability in the incidence of coral and octocoral diseases in the wider Caribbean. Proceedings of the 9th International Coral Reef Symposium, Bali, 2, 1231–1238.Google Scholar
  242. Weil, E., Croquer, A., & Urreiztieta, I. (2009). Temporal variability and impact of coral diseases and bleaching in La Parguera, Puerto Rico from 2003–2007. Caribbean Journal of Science, 45, 221–246.CrossRefGoogle Scholar
  243. Weissman, G., & Rumpler, J., (2019). Safe for swimming? Water quality at our beaches. Environment America Research & Policy Center Report. 47pp. (July 2019). https://environmentamerica.org/sites/environment/files/reports/AME%20Safe%20for%20Swimming%20Jul19-web.pdf.
  244. Whelan, K. R. T., Miller, J., Sanchez, O., & Patterson, M. (2007). Impact of the 2005 coral bleaching event on Porites porites and Colpophyllia natans at Tektite Reef, US Virgin Islands. Coral Reefs, 26(3), 689–693.  https://doi.org/10.1007/s00338-007-0241-y.CrossRefGoogle Scholar
  245. Wild, C., Hoegh-Guldberg, O., Naumann, M. S., Colombo-Pallotta, M. F., Ateweberhan, M., Fitt, W. K., et al. (2011). Climate change impedes scleractinian corals as primary reef ecosystem engineers. Marine and Freshwater Research, 62(2), 205–215.  https://doi.org/10.1071/MF10254 CrossRefGoogle Scholar
  246. Willis, B. L., Page, C. A., & Dinsdale, E. A. (2004). Coral disease on the Great Barrier Reef. In E. Rosenberg & Y. Loya (Eds.), Coral health and disease (pp. 69–104). Berlin: Springer http://link.springer.com/chapter/10.1007/978-3-662-06414-6_3.CrossRefGoogle Scholar
  247. Work, T. M., & Aeby, G. S. (2011). Pathology of tissue loss (white syndrome) in Acropora sp. corals from the Central Pacific. Journal of Invertebrate Pathology, 107(2), 127–131.  https://doi.org/10.1016/j.jip.2011.03.009.CrossRefGoogle Scholar
  248. Work, T. M., Russell, R., & Aeby, G. S. (2012). Tissue loss (white syndrome) in the coral Montipora capitata is a dynamic disease with multiple host responses and potential causes. Proceedings of the Royal Society B, 279, 4334–4341.  https://doi.org/10.1098/rspb.2012.1827.CrossRefGoogle Scholar
  249. Ziegler, M., Roik, A., Porter, A., Zubier, K., Mudarris, M. S., Ormond, R., & Voolstra, C. R. (2016). Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Marine Pollution Bulletin, 105(2), 629–640.CrossRefGoogle Scholar
  250. Zvuloni, A., Artzy-Randrup, Y., Katriel, G., Loya, Y., & Stone, L. (2015). Modeling the impact of white-plague coral disease in climate change scenarios. PLoS Computational Biology, 11, e1004151.  https://doi.org/10.1371/journal.pcbi.1004151.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Brooke E. Gintert
    • 1
    • 2
    • 3
  • William F. Precht
    • 1
    Email author
  • Ryan Fura
    • 1
  • Kristian Rogers
    • 1
  • Mike Rice
    • 1
  • Lindsey L. Precht
    • 1
    • 4
  • Martine D’Alessandro
    • 1
    • 5
  • Jason Croop
    • 1
  • Christina Vilmar
    • 1
  • Martha L. Robbart
    • 1
    • 6
  1. 1.Marine and Coastal ProgramsDial Cordy and Associates, Inc.MiamiUSA
  2. 2.Ransom Everglades SchoolMiamiUSA
  3. 3.Division of Marine Geosciences, Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  4. 4.Coastal Resources Section, Division of Environmental Resources ManagementMiami-Dade County, Department of Regulatory and Economic ResourcesMiamiUSA
  5. 5.Division of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  6. 6.GHDWellingtonUSA

Personalised recommendations