Assessment of microcystin contamination of Amaranthus hybridus, Brassica oleracea, and Lactuca sativa sold in markets: a case study of Zaria, Nigeria

  • Mathias Ahii ChiaEmail author
  • Zinariya Zippora Auta
  • Akolo Elijah Esson
  • Abraham G. Yisa
  • David S. Abolude


Microcystins (MCs) are toxic secondary metabolites produced by several cyanobacteria genera that have been implicated in human cancer cases and deaths. Human exposure routes include direct contact with contaminated water and the consumption of contaminated food. The present study investigated the presence of MCs in three commonly consumed vegetables at the point of sale in market places as a means of assessing the direct human health risk of buying vegetables. Overall, 53% of the vegetables obtained from different markets had levels of MCs that were higher than 1.00 μg/g. Amaranthus hybridus L. (smooth amaranth) had the highest MC concentration (4.79 μg/g) in samples obtained from Sabon Gari Market, while Lactuca sativa L. (garden lettuce) had the lowest concentration (0.17 μg/g) in samples obtained from Dan-Magaji Market. The highest total daily intake (TDI) of MCs by an adult weighing 60 kg was 3.19 μg/kg for A. hybridus, 1.41 μg/kg for Brassica oleracea L. (cabbage), and 2.94 μg/kg for L. sativa. The highest TDI of MCs for a child weighing 25 kg was highest in A. hybridus (1.91 μg/kg), followed by L. sativa (1.77 μg/kg). These results revealed that the consumption of vegetables sold in markets in Zaria, Nigeria, during the dry season represents a major exposure route to MCs. There is, therefore, an urgent need to develop policies and monitoring strategies to tackle this problem in developing countries.


Microcystins/secondary metabolites Bioaccumulation Food contamination Public health 


Supplementary material

10661_2019_7725_MOESM1_ESM.pdf (7.7 mb)
Figure 1S. Irrigated farms (A), typical lentic (B) and lotic (C) water bodies with visible algal and cyanobacterial blooms that are used for irrigation of farms, and (D) ongoing irrigation with untreated water. (PDF 7.70MB)


  1. Bittencourt-Oliveira, M. C., Hereman, T. C., Macedo-Silva, I., Cordeiro-Araújo, M. K., Sasaki, F. F. C., & Dias, C. T. S. (2015). Sensitivity of salad greens (Lactuca sativa L. and Eruca sativa Mill.) exposed to crude extracts of toxic and non-toxic cyanobacteria. Brazilian Journal of Biology, 75(2), 273–278.CrossRefGoogle Scholar
  2. Bittencourt-Oliveira, M. C., Cordeiro-Araújo, M. K., Chia, M. A., Arruda-Neto, J. D. T., Oliveira, E. T., & Santos, F. (2016). Lettuce irrigated with contaminated water: photosynthetic effects, antioxidative response and bio accumulation of microcystin congeners. Ecotoxicology and Environmental Safety, 128(6), 83–90.CrossRefGoogle Scholar
  3. Bruno, M., Melchiorre, S., Messineo, V., Volpi, F., Dicorcia, A., Aragona, I., Guglielmone, G., Dipaolo, C., Cenni, M., Ferranti, P. and Gallo, P. (2009). Microcystin detection in contaminated fish from Italian lakes using ELISA immunoassays and LC-MS/MS analysis, In: Gault, P.M. and Marler, H.J. Eds, Handbook on cyanobacteria. Nova science Publishers, Inc. Pp. 181–210.Google Scholar
  4. Bruno, M., Gallo, P., Messineo, V., & And Melchiorre, S. (2012). Health Risk Associated with Microcystin Presence in the Environment: The Case of Italian Lake (Lake Vico, Central Italy). Int. J. Environ. Prot., 2(4), 34–41.Google Scholar
  5. Carneiro, R. L., Dorr, F. A., Bortoli, S., Delherbe, N., Vasquez, M., & Pinto, E. (2012). Co-occurrence of microcystin and microginin congeners in Brazilian strains of Microcystis sp. FEMS Microbiol., 82, 692–702.CrossRefGoogle Scholar
  6. Chen, J., Song, L., Dai, J., Gan, N., & Lui, Z. (2004). Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon, 43(4), 393–400.CrossRefGoogle Scholar
  7. Chia, A. M., & Kwaghe, M. J. (2015). Microcystins contamination of surface water supply sources in Zaria-Nigeria. Environmental Monitoring and Assessment, 187, 606.CrossRefGoogle Scholar
  8. Chia, A. M., Abolude, D. S., Ladan, Z., Akanbi, O., & Kalaboms, A. (2009a). The presence of microcystins in aquatic ecosystems in northern Nigeria: Zaria as a case study. Research Journal of Environmental Toxicology, 3(4), 170–178.CrossRefGoogle Scholar
  9. Chia, A. M., Oniye, S. J., Ladan, Z., Lado, Z., Pila, E. A., Inekwe, V. U., & Mmerole, J. U. (2009b). A survey for the presence of microcystins in aquaculture ponds in Zaria, Northern-Nigeria: possible public health implication. African Journal of Biotechnology, 8(22), 6282–6289.CrossRefGoogle Scholar
  10. Codd, G., Bell, S., Kaya, K., Ward, C., Beattie, K., & Metcalf, J. (1999). Cyanobacterial toxins, exposure routes and human health. European Journal of Phycology, 34, 405–415.CrossRefGoogle Scholar
  11. Constable, G. A., & Rawson, H. M. (1980). Effect of leaf position, expansion and age on photosynthesis, transpiration and water use efficiency of cotton. Australian Journal of Plant Physiology, 7, 89–100.Google Scholar
  12. Cordeiro-Araujo, M. K., Chia, M. A., Arruda-Neto, J. D. T., Tornisielo, V. L., Vilca, F. Z., & Bittencourt-Oliveira, M. C. (2016). Microcystin-LR bioaccumulation and depuration kinetics in lettuce and arugula: human health risk assessment. The Science of the Total Environment, 566–567, 1379–1386.CrossRefGoogle Scholar
  13. Crush, J. R., Briggs, L. R., Sprosen, J. M., & Nichols, S. N. (2008). Effect of irrigation with lake water containing microcystins on microcystin content and growth of ryegrass, clover, rape and lettuce. Environmental Toxicology, 23, 246–252.CrossRefGoogle Scholar
  14. Dietrich, D., & Hoeger, S. (2005). Guidance values for microcystins in water and cyanobacterial supplements products (blue-green algal supplements): a reasonable or misguided approach? Toxicology and Applied Pharmacology, 203, 273–289.CrossRefGoogle Scholar
  15. Diez- Quijada, L., Guzman- Guillen, R., Ortega, A. I. P., Llana- Roeiz- Cabello, M., Campos, A., Vasconcelos, V., Jos, A., & Camean, A. N. (2018). New method for simultaneous determination of microcystins and cylindrospermopsin in vegetable matrices by SPE – UPLC – MS/MS. Toxins, 10(406), 1–16.Google Scholar
  16. Ettoumi, A., El Khalloufi, F., El Ghazali, I., Oudra, B., Amrani, A., Nasri, H. and Bouaicha, N. (2011). Bioaccumulation of cyanobacterial toxins in aquatic organisms and its consequences for public health In: Kattel, G. (Ed). Zooplankton and Phytoplankton: Types, characteristics and ecology. Nova science publishers Inc., New York, pp. 1–34.Google Scholar
  17. Grosse, Y., Baan, R., Straif, K., Secretan, B., El Ghissassi, F., & Cogliano, V. (2006). Carcinogenicity of nitrate, nitrite and cyanobacterial toxins. The Lancet Oncology, 7, 628–629.CrossRefGoogle Scholar
  18. Gutierrez – Praena, D., Jos, A., Pichardo, S., Moreno, I. M., & Camean, A. M. (2013). Presence and bioaccumulation of microcystins and cylindrospermopsin in food and the effectiveness of some cooking techniques at decreasing their concentrations: a review. Food and Chemical Toxicology, 53, 139–152.CrossRefGoogle Scholar
  19. Harada, K. I., Tsuji, K., Watanabe, M. F., & Kondo, F. (1996). Stability of microcystins from cyanobacteria III. Effect of pH and temperature. Phycologia., 35, 83–88.CrossRefGoogle Scholar
  20. Harke, M. J., Steffen, M. M., Gobler, C. J., Otten, T. G., Wilhelm, S. W., Wood, S. A., & Paerl, H. W. (2016). A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae, 54, 4–20.CrossRefGoogle Scholar
  21. Hereman, T. C., & Bittencourt-Oliveira, M. C. (2012). Bioaccumulation of microcystins in lettuce. Journal of Phycology, 48, 1535–1537.CrossRefGoogle Scholar
  22. Herfindal, L., & Selheim, F. (2006). Microcystin produces disparate effects on liver cells in a dose dependent manner. Mini Reviews in Medicinal Chemistry, 6, 279–285.CrossRefGoogle Scholar
  23. Ikehara, T., Imamura, S., Sano, T., Nakashima, J., Kuni Yoshi, K., Orshiro, N., Yoshimoto, M., & Yasumoto, T. (2009). The effect of structural variation in 21 microcystins on their inhibition of PP2A and the effect of replacing cys 269 with glycine. Toxicon., 54, 539–544.CrossRefGoogle Scholar
  24. Isaacs, J. D., Strangman, W. K., Barbera, A. E., Mallin, M. A., Mclver, M. R., & Wright, J. L. C. (2014). Microcystins and two new micropeptin cyanopeptides produced by unprecedented Microcystis aeruginosa blooms in North Carolina’s Cape Fear River. Harmful Algae, 31, 82–86.CrossRefGoogle Scholar
  25. Kittler, K., Schreiner, M., Krumbein, A., Manzei, S., Koch, M., Rohn, S., & Maul, R. (2012). Uptake of the cyanobacterial toxin cylindrospermopsin in Brassica vegetables. Food Chemistry, 133, 875–879.CrossRefGoogle Scholar
  26. Lance, E., Petit, A., Sanchez, W., Paty, C., Gerard, C., & Bormans, M. (2014). Evidence of trophic transfer of microcystins from the gastropod Lymnaea stagnalis to the fish Gasterosteus aculeatus. Harmful Algae, 31, 9–17.CrossRefGoogle Scholar
  27. Lefebvre, B. R. (2013). The accumulation of the Cyanobacterial toxin, microcystin, in cherry tomato (Solanum lycopersicum) and bush bean (Phaseolus vulgaris) plants. UNH Center for Freshwater Biology Research, 15, 1), 1–1),11.Google Scholar
  28. Li, H., Xie, P., Li, G., Hao, L., & Xiong, Q. (2009). In vivo study on the effects of microcystin extracts on the expression profiles of proto-oncogenes (C-fos, C-jun and C-myc) in liver, kidney and testis of male Wistar rats injected i.v. with toxins. Toxicon., 53, 169–175.CrossRefGoogle Scholar
  29. McElhiney, J., Lawton, L. A., & Leifert, C. (2001). Investigations into the inhibitory effect of microcystins on plant growth and the toxicity of plant tissues following exposure. Toxicon., 39, 1411–1420.CrossRefGoogle Scholar
  30. Mohammed, Z. A., & Al-Shehri, A. M. (2009). Microcystins in groundwater wells and their accumulation in vegetable plants irrigated with contaminated waters in Saudi Arabia. Journal of Hazardous Materials, 172, 310–315.CrossRefGoogle Scholar
  31. Oliveira, N. B., Schwartz, C. A., Bloch, C., Jr., Pauline, L., & Pires, O. R., Jr. (2013). Bioaccumulation of cyanotoxins in Hypophthalmichthys molitrix (silver carp) in Paranoa Lake, Brasilia_DF, Brazil. Bulletin of Environmental Contamination and Toxicology, 90, 308–313.CrossRefGoogle Scholar
  32. Peuthert, A., Kun, L., Baik, S., & Pflugmacher, S. (2015). Transfer of cyanobacteria toxins into edible plants via irrigation with lake water – a Chinese case study. Aperito J. Aquat Mar. Ecosys., 1(1), 1–7.Google Scholar
  33. Pflugmacher, S. (2004). Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquatic Toxicology, 70, 169–178.CrossRefGoogle Scholar
  34. Pindihama, G. K., & Gitari, M. W. (2017). Uptake and growth effects of cyanotoxins on aquatic plants Ludwigia adscendens and Amaranthus hybridus in raw surface waters. Int. J. Environ. Sci. Dev., 8(2), 93–100.CrossRefGoogle Scholar
  35. Steiner, K., Zimmermann, L., Hagenbuch, B. and Dietrich, D. 2016. Zebrafish Oatp-mediated transport of microcystin congeners. Erchienen In: Archives of Toxicology, 90(5), 1129–1139.CrossRefGoogle Scholar
  36. Svirčev, Z., Krstić, S., Miladinov-Mikov, M., Baltić, V. and Vidović, M. (2009). Freshwater cyanobacterial blooms and primary liver cancer epidemiological studies in Serbia. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:36–55.CrossRefGoogle Scholar
  37. Tsoho, B.A. and Salau, S.A. (2012). Profitability and Constraints to Dry Season Vegetable Production under Fadama in Sudan Savannah Ecological Zone of Sokoto State Nigeria. Journal of Development and Agricultural Economics 4(7): 214–222Google Scholar
  38. Turner, A. D., Dhanj-Rapkova, M., O’Neil, A., Coates, L., Lewis, A., & Lewis, K. (2017). Analysis of microcystins in cyanobacterial blooms from freshwater bodies in England. Toxins., 10(39), 1–29.Google Scholar
  39. Wood, S., Briggs, L., Sprosen, J., Bloxham, M., Ruck, J. and Wear, B. 2004. A report on microcystin levels in water, trout and freshwater mussels in Lakes Rotoiti and Rotoehu during 2003/2004. A Report for Environment Bay of Plenty.Google Scholar
  40. World Health Organization (Ed.). (2011). Cyanobacterial toxins: microcystins-LR. Guidelines for drinking water quality, fourth ed. Geneva: World Health Organization.Google Scholar
  41. Zhang, D., Xie, P., & Chen, J. (2010). Effects of temperature on the stability of microcystin in muscle of fish and its consequences for food safety. Bulletin of Environmental Contamination and Toxicology, 84, 202–207.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BotanyAhmadu Bello UniversityZariaNigeria
  2. 2.Department of BiologyAhmadu Bello UniversityZariaNigeria
  3. 3.Department of ZoologyAhmadu Bello UniversityZariaNigeria

Personalised recommendations