Advertisement

Monitoring of the process of waste landfill leachate diffusion in clay and sandy soil

  • Flávia GonçalvesEmail author
  • Camila Zoe Correa
  • Deize Dias Lopes
  • Pedro Rodolfo Siqueira Vendrame
  • Raquel Souza Teixeira
Article
  • 32 Downloads

Abstract

The objective of this research was to evaluate the interaction of landfill leachate of urban solid waste in clayey (CL) and sandy soils (SL) in order to determine physical and chemical parameters that can be used as indicators of soil contamination when there are faults in the landfill waterproofing. In the diffusion tests, compacted soil samples were placed in contact with leachate (methanogenic phase). The temporal analysis (200 days) considered the parameters pH, electrical conductivity (EC), alkalinity, nitrogen series, chemical oxygen demand (COD), solids and color for the leachate and pH, ΔpH, EC, total nitrogen (TN), chemical elements, and cation exchange capacity (CEC) for the soils. Correlation analysis and principal component analysis (PCA) were performed to results. It was observed that the studied soils have potential to attenuate chemicals present in the leachate; this indicates the possibility of using them as base in landfills. Correlation analysis and PCA carried out to CL showed that in a process of CL monitoring the pH would be the key parameter to indicate contamination of this soil, due to the high correlation of this parameter with the others analyzed. For the SL, the parameters pH, alkalinity, apparent color, and COD (total and filtered) could be used as indicators of contamination. In both soils, monitoring of concentrations of Ca, Mg, K, SB, V, and CTC can be used to indicate possible faults in the waterproofing system of the landfill.

Keywords

Soil contamination Temporal analysis Principal component analysis (PCA) Landfill waterproofing barrier Leak detection techniques 

Notes

Acknowledgments

The authors would like to thank the Coordination of Improvement of Higher Level Personnel (CAPES) for the scholarship.

References

  1. Aboyeji, O. S., & Eigbokhan, S. F. (2016). Evaluations of groundwater contamination by leachates around Olusosun open dumpsite in Lagos metropolis, southwest Nigeria. Journal of Environmental Management.  https://doi.org/10.1016/j.jenvman.2016.09.002.CrossRefGoogle Scholar
  2. Akpan, A. E., Ugbaja, A. N., Okoyeh, E. I., & George, N. J. (2018). Assessment of spatial distribution of contaminants and their levels in soil and water resources of Calabar, Nigeria using geophysical and geological data. Environment and Earth Science, 77, 13.  https://doi.org/10.1007/s12665-017-7189-1.CrossRefGoogle Scholar
  3. APHA – American Public Health Association. (2005). Standard methods for the examination of water and wastewater (Vol. 21, p. 1082). Washington: APHA, AWWA, WPCF.Google Scholar
  4. Arunbabu, K., Indu, S., & Ramasamy, E. V. (2017). Leachate pollution index as an effective tool in determining the phytotoxicity of municipal solid waste leachate. Waste Management.  https://doi.org/10.1016/j.wasman.2017.07.012.CrossRefGoogle Scholar
  5. Barone, F. S. (1989) Determination of diffusion and adsorption coefficients for some contaminants in clayey soil and rock: laboratory determination and field evaluation. Doctoral thesis – University of Western Ontario.Google Scholar
  6. Canellas, L. P., Zandonadi, D. B., Médici, L. O., Peres, L. E. P., Olivares, F. L., & Façanha, A. R. (2005). Bioatividade de substâncias húmicas: ação sobre desenvolvimento e metabolismo das plantas. In L. P. Canellas & G. A. Santos (Eds.), Humosfera: tratado preliminar sobre a química das substâncias húmicas (pp. 224–243). Campos dos Goytacazes: CCTA, UENF.Google Scholar
  7. Christensen, T. H., Kjeldsen, P., Bjerg, P. L., Jensen, D. L., Christensen, J. B., Baun, A., Albrechtsen, H. J., & Heron, G. (2001). Review: biogeochemistry of landfill leachate plumes. Applied Geochemistry.  https://doi.org/10.1016/S0883-2927(00)00082-2.CrossRefGoogle Scholar
  8. Cronan, C.S. (2018) Soil biogeochemistry. In: Ecosystem biogeochemistry. Springer Textbooks in Earth Sciences, Geography and Environment. Springer.  https://doi.org/10.1007/978-3-319-66444-6_2 Google Scholar
  9. De Melo, T. R., Figueiredo, A., Machado, W., & Tavares Filho, J. (2019). Changes on soil structural stability after in natura and composted chicken manure application. International Journal of Recycling of Organic Waste in Agriculture, 8, 1–6.  https://doi.org/10.1007/s40093-019-0250-1.CrossRefGoogle Scholar
  10. EPA – Environmental Protection Agency. (1993). Manual: Nitrogen. Cincinnati: Ohio.Google Scholar
  11. Gonçalves, F., Souza, C. H. U., Tahira, F. S., Fernandes, F., & Teixeira, R. S. (2018). Incremento de lodo de ETA em barreiras impermeabilizantes de aterro sanitário. Revista DAE.  https://doi.org/10.4322/dae.2016.018.CrossRefGoogle Scholar
  12. Han, Z., Ma, H., Shi, G., He, L., Wei, L., & Shi, Q. (2016). A review of groundwater contamination near municipal solid waste landfill sites in China. Science of the Total Environment.  https://doi.org/10.1016/j.scitotenv.2016.06.201.CrossRefGoogle Scholar
  13. Johnson, R. L., Cherry, J. A., Pankow, J. F. (1989). Diffusive contaminant transport in natural clay: a field example and implications for clay-lined waste disposal sites. Environmental Science & Technology, 23 (3), 340–349CrossRefGoogle Scholar
  14. Kapelewska, J., Kotowska, U., Karpińska, J., Kowalczuk, D., Arciszewska, A., & Świrydo, A. (2017). Occurrence, removal, mass loading and environmental risk assessment of emerging organic contaminants in leachates, groundwaters and wastewaters. Microchemical Journal.  https://doi.org/10.1016/j.microc.2017.11.008.CrossRefGoogle Scholar
  15. Kawai, M., Purwanti, I. F., Nagao, N., Slamet, A. H., & Toda, T. (2012). Seasonal variation in chemical properties and degradability by anaerobic digestion of landfill leachate at Benowo in Surabaya, Indonesia. Journal of Environmental Management.  https://doi.org/10.1016/j.jenvman.2012.06.022.CrossRefGoogle Scholar
  16. Khattabi, H., Aleya, L., & Mania, J. (2002). Changes in the quality of landfill leachates from recent and aged municipal solid waste. Waste Management & Research.  https://doi.org/10.1177/0734247X0202000407.CrossRefGoogle Scholar
  17. Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., & Christensen, T. H. (2003). Present and long-term composition of MSW landfill leachate: a review. Critical Reviews in Environmental Science and Technology, 32(4), 297–336.CrossRefGoogle Scholar
  18. Koda, E., Tkaczyk, A., Lech, M., & Osinski, P. (2017). Application of electrical resistivity data sets for the evaluation of the pollution concentration level within landfill subsoil. Applied Sciences, 7, 262.  https://doi.org/10.3390/app7030262.CrossRefGoogle Scholar
  19. Krčmar, D., Tenodi, S., Grba, N., Kerkez, D., Watson, M., Rončević, S., & Dalmacija, B. (2018). Preremedial assessment of the municipal landfill pollution impact on soil and shallow groundwater in Subotica, Serbia. Science of the Total Environment, 615(2018), 1341–1354.  https://doi.org/10.1016/j.scitotenv.2017.09.283.CrossRefGoogle Scholar
  20. Leite, A. L., Paraguassú, A. B., & Rowe, R. K. (2003). Sorption of Cd, K, F and Cl on some tropical soils. Canadian Geotechnical Journal, 40(3), 629-642. https://doi.org/10.1139/t03-011.CrossRefGoogle Scholar
  21. Levy-Booth, D. J., Pr Escott, C. E., & Grayston, S. J. (2014). Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biology and Biochemistry.  https://doi.org/10.1016/j.soilbio.2014.03.021.CrossRefGoogle Scholar
  22. Lijklema, L. (1972). Factors affecting pH change in alkaline waste water treatment – III: a dynamic simulation. Water Research.  https://doi.org/10.1016/0043-1354(72)90091-7.CrossRefGoogle Scholar
  23. Ling, C., & Zhang, Q. (2017). Evaluation of surface water and groundwater contamination in a MSW landfill area using hydrochemical analysis and electrical resistivity tomography: a case study in Sichuan province, Southwest China. Environmental Monitoring and Assessment.  https://doi.org/10.1007/s10661-017-5832-7.
  24. Longe, E. O., & Enekwechi, L. O. (2007). Investigation on potential groundwater impacts and influence of local hydrogeology on natural attenuation of leachate at a municipal landfill. International journal of Environmental Science and Technology.  https://doi.org/10.1007/BF03325971.CrossRefGoogle Scholar
  25. Lopes, D. D., Silva, S. M. C. P., Fernandes, F., Teixeira, R. S., Celligoi, A., & Dall’antônia, L. H. (2012). Geophysical technique and groundwater monitoring to detect leachate contamination in the surrounding area of a landfill e Londrina (PR - Brazil). Journal of Environmental Management.  https://doi.org/10.1016/j.jenvman.2012.05.028.CrossRefGoogle Scholar
  26. Mendonça, E. S., & Rowell, P. L. (1996). Mineral and organic fractions of two oxisols and their influence on effective cation - exchange capacity. Soil Science Society of America Journal.  https://doi.org/10.2136/sssaj1996.03615995006000060038x.CrossRefGoogle Scholar
  27. Mishra, S., & Tiwary, D. (2018). Leachate characterization and evaluation of leachate pollution potential of urban municipal landfill sites. International Journal of Environment and Waste Management.  https://doi.org/10.1504/IJEWM.2018.093431.CrossRefGoogle Scholar
  28. Moreira, C. A., Helene, L. P. I., Nogara, P., & Ilha, L. M. (2018). Analysis of leaks from geomembrane in a sanitary landfill through models of electrical resistivity tomography in South Brazil. Environment and Earth Science, 77(7).  https://doi.org/10.1007/s12665-017-7180-x.
  29. Mouhoun-Chouaki, S., Derridj, A., Tazdaït, D., & Salah-Tazdaït, R. (2019). A study of the impact of municipal solid waste on some soil physicochemical properties: the case of the landfill of Ain-El-Hammam Municipality, Algeria. Applied and Environmental Soil Science.  https://doi.org/10.1155/2019/3560456.CrossRefGoogle Scholar
  30. Naveen, B. P., Mahapatra, D. M., Sitharam, T. G., Sivapullaiah, P. V., & Ramachandra, T. V. (2017). Physico-chemical and biological characterization of urban municipal landfill leachate. Environmental Pollution.  https://doi.org/10.1016/j.envpol.2016.09.002.CrossRefGoogle Scholar
  31. Nguyen, T.-B., Lim, J., & Choi, H. (2011). Numerical modeling of diffusion for volatile organic compounds through composite landfill liner systems. Journal of Civil Engineering.  https://doi.org/10.1007/s12205-011-1293-7.CrossRefGoogle Scholar
  32. Norton, J., Alzerreca, J., Suwa, Y., & Klotz, M. (2002). Diversity of ammonia monooxygenase operon in autotrophic ammonia oxidizing bacteria. Archives of Microbiology.  https://doi.org/10.1007/s00203-001-0369-z.CrossRefGoogle Scholar
  33. Oliveira, A. C. D. G., Correa, C. Z., Prates, K. V. M. C., & Lopes, D. D. (2017). Nitrifying, denitrifying and heterotrophic biomass present in moving bed-reactor. American Journal of Environmental Sciences.  https://doi.org/10.3844/ajessp.2017.47.57.CrossRefGoogle Scholar
  34. Parameswari, K., & Mudgal, B. V. (2014). Geochemical investigation of groundwater contamination in Perungudi dumpsite, South India. Arabian Journal of Geosciences.  https://doi.org/10.1007/s12517-013-0832-6.CrossRefGoogle Scholar
  35. Pavan, M. A., Blocj, M. F., Zempulski, H. C., Miyazawa, M., & Zocoler, D. C. (1991). Manual de análise química do solo. Paraná: Instituto Agronômico do Paraná, Londrina.Google Scholar
  36. Prosser, J. I., & Nicol, G. W. (2008). Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environmental Microbiology.  https://doi.org/10.1111/j.1462-2920.2008.01775.x.CrossRefGoogle Scholar
  37. Przydatek, G., & Kanownik, W. (2019). Impact of small municipal solid waste landfill on groundwater. Quality. Environ Monit Assess, 191, 169.  https://doi.org/10.1007/s10661-019-7279-5.CrossRefGoogle Scholar
  38. Rizzo, R. P., & Lollo, J. A. (2006). Capacidade de retenção de barreiras de proteção produzidas com solo arenoso estabilizado quimicamente. Engenharia Sanitaria e Ambiental.  https://doi.org/10.1590/S1413-41522006000300008.CrossRefGoogle Scholar
  39. Samadder, S. R., Prabhakar, R., Khan, D., Kishan, D., & Chauhan, M. S. (2017). Analysis of the contaminants released from municipal solid waste landfill site: a case study. Science of the Total Environment, 580, 593–601.  https://doi.org/10.1016/j.scitotenv.2016.12.003.CrossRefGoogle Scholar
  40. Shu, S., Zhu, W., Wang, S., Ng, C. W. W., Chen, Y. M., & Chiu, A. C. F. (2018). Leachate breakthrough mechanism and key pollutant indicator of municipal solid waste landfill barrier systems: centrifuge and numerical modeling approach. Science of the Total Environment, 612, 1123–1131.  https://doi.org/10.1016/j.scitotenv.2017.08.185.CrossRefGoogle Scholar
  41. Spagni, A., & Marsili-Libelli, S. (2009). Nitrogen removal via nitrite in a sequencing batch reactor treating sanitary landfill leachate. Bioresource Technology.  https://doi.org/10.1016/j.biortech.2008.06.064.CrossRefGoogle Scholar
  42. Sposito, G. (1989). The chemistry of soils. New York: Oxford University Press.Google Scholar
  43. Tałałaj, I. A., Biedka, P., Walery, M. J., & Leszczyński, J. (2016). Monitoring Of leachate quality at a selected municipal landfill site in Podlasie, Poland. Journal of Ecological Engineering.  https://doi.org/10.12911/22998993/63477.CrossRefGoogle Scholar
  44. Tedesco, M. J., et al. (1995). Análises de solo, plantas e outros materiais (2.Ed ed.). Porto Alegre: UFRGS 174 p.Google Scholar
  45. Vahabian, M., Hassanzadeh, Y., & Marofi, S. (2019). Assessment of landfill leachate in semi-arid climate and its impact on the groundwater quality case study: Hamedan, Iran. Environmental Monitoring and Assessment, 191, 109.  https://doi.org/10.1007/s10661-019-7215-8.CrossRefGoogle Scholar
  46. Wan, G. X., Han, C., Zh An, G. J., Hu An, G. Q., Den, G. H., Den, G. Y., & Zh Ong, W. (2015). Long term fertilization effects on active ammonia oxidizers in an acidic up land soil in China. Soil Biology and Biochemistry.  https://doi.org/10.1016/j.soilbio.2015.02.013.CrossRefGoogle Scholar
  47. Xie, H., Chen, Y., Thomas, H. R., Sedighi, M., Masum, S. A., & Ran, Q. (2016). Contaminant transport in the sub-surface soil of an uncontrolled landfill site in China: site investigation and two-dimensional numerical analysis. Environmental Science and Pollution Research, 23, 2566–2575.  https://doi.org/10.1007/s11356-015-5504-5.CrossRefGoogle Scholar
  48. Yin, C., Fan, F. L., Son, G. A. L., Fan, X. P., Din, G. H., Ran, W., Qiu, H. Z., & Lian, G. Y. C. (2017). The response patterns of community traits of N2O emission-related functional guilds to temperature across different arable soils under inorganic fertilization. Soil Biology and Biochemistry.  https://doi.org/10.1016/j.soilbio.2017.01.022.CrossRefGoogle Scholar
  49. Yong, R. N., Mohamed, A. M. O., & Warkentin, B. P. (1992). Principles of contaminant tranport in soils (p. 327). Amsterdam: Elsevier Science Publishers B. V.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Flávia Gonçalves
    • 1
    Email author
  • Camila Zoe Correa
    • 1
  • Deize Dias Lopes
    • 1
  • Pedro Rodolfo Siqueira Vendrame
    • 2
  • Raquel Souza Teixeira
    • 1
  1. 1.Department of Civil ConstructionState University of LondrinaLondrinaBrazil
  2. 2.Department of GeosciencesState University of LondrinaLondrinaBrazil

Personalised recommendations