Advertisement

Response of ecosystem water use efficiency to climate change in the Tianshan Mountains, Central Asia

  • Xingming HaoEmail author
  • Haiyan Ma
  • Ding Hua
  • Jingxiu Qin
  • Ying Zhang
Article
  • 53 Downloads

Abstract

Ecosystem water use efficiency (EWUE) is a popular issue in the comprehensive study of climate change, ecology, and hydrology. Currently, views on the response of EWUE to temperature, precipitation, and drought remain controversial. Based on ecosystem net primary productivity (NPP) and evapotranspiration (ET) datasets, both of which were retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) using the Carnegie Ames Stanford approach (CASA) and surface energy balance algorithms for land (SEBAL) models, respectively, this study comprehensively examined the relationship between EWUE and temperature, precipitation, and drought in the Tianshan Mountains of Central Asia. The results showed that EWUE had an obvious temporal change trend in the Tianshan Mountains. The EWUEs of all vegetation types presented an increasing trend in spring and a decreasing trend in autumn. These results led to a phase shift in the annual cycle of EWUE over the years. Compared with 2000 to 2003, from 2012 to 2016, the annual EWUE cycle had advanced by 32 days. Precipitation generally had a negative effect on EWUE, while temperature had an obvious positive effect on EWUE. The EWUE responses to drought for the different vegetation types showed a variety of change trends. With the increase in drought stress, EWUE not only showed a simple upward or downward trend but also showed an upward trend followed by a downward trend or a downward trend followed by an upward trend. EWUE is more sensitive to changing environments than NPP or ET and is more suitable for analyzing ecosystem responses to global change.

Keywords

Climate change Drought Elasticity coefficient Net primary productivity (NPP) 

Notes

Acknowledgments

We thank the editor and anonymous reviewers, whose comments greatly improved the manuscript.

Funding information

This research was supported by the National Natural Science Foundation of China (41571109) and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA20100303).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Allen, R., Irmak, A., Trezza, R., Hendrickx, J. M. H., Wim, B., & Kjaersgaard, J. (2011). Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrological Processes, 25(26), 4011–4027.CrossRefGoogle Scholar
  2. Atta-ur Rahman, & Dawood, M. (2017). Spatio-statistical analysis of temperature fluctuation using Mann–Kendall and Sen’s slope approach. Climate Dynamics, 48(3–4), 783–797.CrossRefGoogle Scholar
  3. Cetin, M. (2015). Determining the bioclimatic comfort in Kastamonu City. Environmental Monitoring & Assessment, 187(10), 1–10.CrossRefGoogle Scholar
  4. Cetin, M., Adiguzel, F., Kaya, O., & Sahap, A. (2016). Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environment Development & Sustainability, 20, 1–15.Google Scholar
  5. Chen, Y., Li, J., Ju, W., Ruan, H., Qin, Z., Huang, Y., Jeelani, N., Padarian, J., & Propastin, P. (2017). Quantitative assessments of water-use efficiency in Temperate Eurasian Steppe along an aridity gradient. PLoS One, 12(7), e0179875.CrossRefGoogle Scholar
  6. Crabtree, R., Potter, C., Mullen, R., Sheldon, J., Huang, S. L., Harmsen, J., et al. (2009). A modeling and spatio-temporal analysis framework for monitoring environmental change using NPP as an ecosystem indicator. Remote Sensing of Environment, 113(7), 1486–1496.CrossRefGoogle Scholar
  7. Fang, S., Yan, J., Che, M., Zhu, Y., Liu, Z., Pei, H., et al. (2013). Climate change and the ecological responses in Xinjiang, China: Model simulations and data analyses. Quaternary International, 311(311), 108–116.CrossRefGoogle Scholar
  8. Gang, C., Wang, Z., Chen, Y., Yang, Y., Li, J., Cheng, J., Qi, J., & Odeh, I. (2016a). Drought-induced dynamics of carbon and water use efficiency of global grasslands from 2000 to 2011. Ecological Indicators, 67, 788–797.CrossRefGoogle Scholar
  9. Gang, C., Wang, Z., Zhou, W., Chen, Y., Li, J., Chen, J., Qi, J., Odeh, I., & Groisman, P. Y. (2016b). Assessing the spatiotemporal dynamic of global grassland water use efficiency in response to climate change from 2000 to 2013. Journal of Agronomy and Crop Science, 202(5), 343–354.CrossRefGoogle Scholar
  10. Hopkinson, R. F., Mckenney, D. W., Milewska, E. J., Hutchinson, M. F., & Vincent, L. A. (2011). Impact of aligning climatological day on gridding daily maximum-minimum temperature and precipitation over Canada. Journal of Applied Meteorology & Climatology, 50(8), 1654–1665.CrossRefGoogle Scholar
  11. Huang, X. T., & Luo, G. P. (2017). Spatio-temporal characteristics of evapotranspiration and water use efficiency in grasslands of Xinjiang. Chinese Journal of Plant Ecology, 41(5), 506–518.CrossRefGoogle Scholar
  12. Huang, M., Piao, S., Zeng, Z., Peng, S., Ciais, P., Cheng, L., Mao, J., Poulter, B., Shi, X., Yao, Y., Yang, H., & Wang, Y. (2016). Seasonal responses of terrestrial ecosystem water-use efficiency to climate change. Global Change Biology, 22(6), 2165–2177.CrossRefGoogle Scholar
  13. Huang, L., He, B., Han, L., Liu, J., Wang, H., & Chen, Z. (2017). A global examination of the response of ecosystem water-use efficiency to drought based on MODIS data. Science of the Total Environment, 601-602, 1097–1107.CrossRefGoogle Scholar
  14. Huang, G., Li, C. H., & Li, Y. (2018). Phenological responses to nitrogen and water addition are linked to plant growth patterns in a desert herbaceous community. Ecology & Evolution, 8(10), 5139–5152.CrossRefGoogle Scholar
  15. Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., de Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D., Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N., Weber, U., Williams, C., Wood, E., Zaehle, S., & Zhang, K. (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467(7318), 951–954.CrossRefGoogle Scholar
  16. Kauwe, M. G. D., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C., Hickler, T., et al. (2013). Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites. Global Change Biology, 19(6), 1759–1779.CrossRefGoogle Scholar
  17. Khalifa, M., Elagib, N. A., Ribbe, L., & Schneider, K. (2017). Spatio-temporal variations in climate, primary productivity and efficiency of water and carbon use of the land cover types in Sudan and Ethiopia. Science of the Total Environment, 624, 790–806.CrossRefGoogle Scholar
  18. Knauer, J., Zaehle, S., Reichstein, M., Medlyn, B. E., Forkel, M., Hagemann, S., & Werner, C. (2017). The response of ecosystem water-use efficiency to rising atmospheric CO2 concentrations: sensitivity and large-scale biogeochemical implications. New Phytologist, 213(4), 1654–1666.CrossRefGoogle Scholar
  19. Li, L. H., Bai, L., Yao, Y. N., Yang, Q., & Zhao, X. (2013). Patterns of climate change in Xinjiang projected by IPCC SRES. Journal of Resources and Eeology, 4(1), 27–35.CrossRefGoogle Scholar
  20. Li, S. G., Eugster, W., Asanuma, J., Kotani, A., Davaa, G., Oyunbaatar, D., et al. (2015). Response of gross ecosystem productivity, light use efficiency, and water use efficiency of Mongolian steppe to seasonal variations in soil moisture. Journal of Geophysical Research Biogeosciences, 113(G1), 777–793.Google Scholar
  21. Li, Q., Lai, L., Zhou, J., Hui, D., Guan, T., Zhang, X., et al. (2018). Differential influence of elevated CO 2 on gas exchange and water use efficiency of four indigenous shrub species distributed in different sandy environments in central Inner Mongolia. Ecological Research, 33, 1–9.CrossRefGoogle Scholar
  22. Lin, Y., Grace, J., Wei, Z., Dong, Y., Xiang, Z., Zhou, L., et al. (2018). Water-use efficiency and its relationship with environmental and biological factors in a rubber plantation. Journal of Hydrology, 563, 273–282.CrossRefGoogle Scholar
  23. Liu, Y., Xiao, J., Ju, W., Zhou, Y., Wang, S., & Wu, X. (2015). Water use efficiency of China’s terrestrial ecosystems and responses to drought. Scientific Reports, 5(5), 13799.CrossRefGoogle Scholar
  24. Liu, C., He, N., Zhang, J., Li, Y., & Yu, G. (2017). Variation of stomatal traits from cold-temperate to tropical forests and association with water use efficiency. Functional Ecology, 32(1).Google Scholar
  25. Lu, X., & Zhuang, Q. (2010). Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data. Remote Sensing of Environment, 114(9), 1924–1939.CrossRefGoogle Scholar
  26. Ma, X., Qi, F., Su, Y., Yu, T., & Deo, R. C. (2018). Characteristics of ecosystem water use efficiency in a desert riparian forest. Environmental Earth Sciences, 77(10), 358.CrossRefGoogle Scholar
  27. Malone, S. L., Tulbure, M. G., Pérez-Luque, A. J., Assal, T. J., Bremer, L. L., Drucker, D. P., Hillis, V., Varela, S., & Goulden, M. L. (2016). Drought resistance across California ecosystems: evaluating changes in carbon dynamics using satellite imagery. Ecosphere, 7(11).Google Scholar
  28. Mitchell, H. (2016). Impact of global change on karst groundwater mineralization in the Jura Mountains. Science of the Total Environment, 541(3), 1208–1221.Google Scholar
  29. Montaldo, N., & Oren, R. (2016). The way the wind blows matters to ecosystem water use efficiency. Agricultural & Forest Meteorology, 217, 1–9.CrossRefGoogle Scholar
  30. Piao, S., Fang, J., Zhou, L., Zhu, B., Tan, K., & Tao, S. (2005). Changes in vegetation net primary productivity from 1982 to 1999 in China. Global Biogeochemical Cycles, 19, 2.CrossRefGoogle Scholar
  31. Ponce Campos, G. E., Moran, M. S., Huete, A., Zhang, Y., Bresloff, C., Huxman, T. E., et al. (2013). Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature, 494(7437), 349–352.CrossRefGoogle Scholar
  32. Post, E., Steinman, B. A., & Mann, M. E. (2018). Acceleration of phenological advance and warming with latitude over the past century. Scientific Reports, 8(1), 3927.CrossRefGoogle Scholar
  33. Sáenz-Romero, C., Rehfeldt, G. E., Crookston, N. L., Duval, P., St-Amant, R., Beaulieu, J., & Richardson, B. A. (2010). Spline models of contemporary, 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation. Climatic Change, 102(3–4), 595–623.CrossRefGoogle Scholar
  34. Sandholt, I., Rasmussen, K., & Andersen, J. (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79(2), 213–224.CrossRefGoogle Scholar
  35. Sang, W. G., & Su, H. X. (2009). Interannual NPP variation and trend of Picea schrenkiana forests under changing climate conditions in the Tianshan Mountains, Xinjiang, China. Ecological Research, 24(2), 441–452.CrossRefGoogle Scholar
  36. StÉphane, P., LawrenceB, F., KarrinP, A., BruceG, J., Kai, M., Natascha, K., et al. (2010). Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Global Change Biology, 12(2), 294–310.Google Scholar
  37. Tang, X., Li, H., Xu, X., Luo, J., Li, X., Ding, Z., & Xie, J. (2016). Potential of MODIS data to track the variability in ecosystem water-use efficiency of temperate deciduous forests. Ecological Engineering, 91(91), 381–391.CrossRefGoogle Scholar
  38. VanLoocke, A., Twine, T. E., Zeri, M., & Bernacchi, C. J. (2012). A regional comparison of water use efficiency for miscanthus, switchgrass and maize. Agricultural and Forest Meteorology, 164(8), 82–95.CrossRefGoogle Scholar
  39. Vialet-Chabrand, S., Jsa, M., Brendel, O., Blatt, M. R., Wang, Y., Hills, A., et al. (2016). Modelling water use efficiency in a dynamic environment: An example using Arabidopsis thaliana. Plant Science, 251, 65–74.CrossRefGoogle Scholar
  40. Wang, W., Ding, Y., Junzeng, X. U., Jiao, X., & Yang, S. (2016). Simulation of future climate change effects on rice water requirement and water use efficiency through multi-model ensemble. Journal of Hydraulic Engineering, 47(6), 715–723.Google Scholar
  41. Wang, B., Liu, D., Asseng, S., Macadam, I., Yang, X., & Yu, Q. (2017). Spatiotemporal changes in wheat phenology, yield and water use efficiency under the CMIP5 multimodel ensemble projections in eastern Australia. Climate Research, 72(2), 83–99.CrossRefGoogle Scholar
  42. Xiao, J., Sun, G. E., Chen, J., Hui, C., Chen, S., Gang, D., et al. (2013). Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China. Agricultural & Forest Meteorology, 182-183(22), 76–90.CrossRefGoogle Scholar
  43. Xie, J., Zha, T., Zhou, C., Jia, X., Yu, H., Yang, B., Chen, J., Zhang, F., Wang, B., Bourque, C. P. A., Sun, G., Ma, H., Liu, H., & Peltola, H. (2016). Seasonal variation in ecosystem water use efficiency in an urban-forest reserve affected by periodic drought. Agricultural & Forest Meteorology, 221, 142–151.CrossRefGoogle Scholar
  44. Yan, H., Wang, S. Q., Billesbach, D., Oechel, W., Bohrer, G., Meyers, T., Martin, T. A., Matamala, R., Phillips, R. P., Rahman, F., Yu, Q., & Shugart, H. H. (2015). Improved global simulations of gross primary product based on a new definition of water stress factor and a separate treatment of C3 and C4 plants. Ecological Modelling, 297(297), 42–59.CrossRefGoogle Scholar
  45. Yang, H., Mu, S., & Li, J. (2014). Effects of ecological restoration projects on land use and land cover change and its influences on territorial NPP in Xinjiang, China. Catena, 115(4), 85–95.CrossRefGoogle Scholar
  46. Yang, Y., Guan, H., Batelaan, O., Mcvicar, T. R., Di, L., Piao, S., et al. (2016a). Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Scientific Reports, 6, 23284.CrossRefGoogle Scholar
  47. Yang, Y., Guan, H., Okke, B., Mcvicar, T. R., Long, D., Shilong, P., et al. (2016b). Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Scientific Reports, 6, 23284.CrossRefGoogle Scholar
  48. Yao, J., Zhao, Y., Chen, Y., Yu, X., & Zhang, R. (2018). Multi-scale assessments of droughts: a case study in Xinjiang, China. Science of the Total Environment, 630, 444–452.CrossRefGoogle Scholar
  49. Yao, J., Hu, W., Chen, Y., Huo, W., Zhao, Y., Mao, W., & Yang, Q. (2019). Hydro-climatic changes and their impacts on vegetation in Xinjiang, Central Asia. Science of the Total Environment, 660, 724–732.CrossRefGoogle Scholar
  50. Yigit, N., Sevik, H., Cetin, M., & Kaya, N. (2016). Determination of the effect of drought stress on the seed germination in some plant species. In I. M. M. Rahman, Z. A. Begum, & H. Hasegawa (Eds.), Water stress in plants (pp. 43–62). London: Intech Open.Google Scholar
  51. Yin, G., Zengyun, H. U., Chen, X., & Tashpolat, T. (2016). Vegetation dynamics and its response to climate change in Central Asia. Journal of Arid Land, 8(3), 375–388.CrossRefGoogle Scholar
  52. Yuan, W., Cai, W., Liu, S., Dong, W., Chen, J., Arain, M. A., Blanken, P. D., Cescatti, A., Wohlfahrt, G., Georgiadis, T., Genesio, L., Gianelle, D., Grelle, A., Kiely, G., Knohl, A., Liu, D., Marek, M. V., Merbold, L., Montagnani, L., Panferov, O., Peltoniemi, M., Rambal, S., Raschi, A., Varlagin, A., & Xia, J. (2014). Vegetation-specific model parameters are not required for estimating gross primary production. Ecological Modelling, 292(6), 1–10.CrossRefGoogle Scholar
  53. Yuan, X., Bai, J., Li, L., Kurban, A., & De, M. P. (2017). The dominant role of climate change in determining changes in evapotranspiration in Xinjiang, China from 2001 to 2012. PLoS One, 12(8), e0183071.CrossRefGoogle Scholar
  54. Zhang, X., Moran, M. S., Zhao, X., Liu, S., Zhou, T., Ponce-Campos, G. E., et al. (2014). Impact of prolonged drought on rainfall use efficiency using MODIS data across China in the early 21st century. Remote Sensing of Environment, 150(150), 188–197.CrossRefGoogle Scholar
  55. Zhang, T., Peng, J., Liang, W., Yang, Y., & Liu, Y. (2016). Spatial-temporal patterns of water use efficiency and climate controls in China’s Loess Plateau during 2000-2010. Science of the Total Environment, 565, 105–122.CrossRefGoogle Scholar
  56. Zhu, W., Pan, Y., He, H., Yu, D., & Hu, H. (2006). Simulation of maximum light use efficiency for some typical vegetation types in China. Science Bulletin, 51(4), 457–463.CrossRefGoogle Scholar
  57. Zhu, Q., Jiang, H., Peng, C., Liu, J., Wei, X., Fang, X., Liu, S., Zhou, G., & Yu, S. (2011). Evaluating the effects of future climate change and elevated CO 2 on the water use efficiency in terrestrial ecosystems of China. Ecological Modelling, 222(14), 2414–2429.CrossRefGoogle Scholar
  58. Zhu, X. J., Yu, G. R., Wang, Q. F., Hu, Z. M., Zheng, H., Li, S. G., Sun, X. M., Zhang, Y. P., Yan, J. H., Wang, H. M., Zhao, F. H., Zhang, J. H., Shi, P. L., Li, Y. N., Zhao, L., Zhang, F. W., & Hao, Y. B. (2015). Spatial variability of water use efficiency in China's terrestrial ecosystems. Global & Planetary Change, 129(X), 37–44.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Desert & Oasis Ecology, Xinjiang Institute of Ecology & GeographyChinese Academy of SciencesUrumqiPeople’s Republic of China
  2. 2.Grassland Research InstituteXinjiang Academy of Animal SciencesUrumqiChina

Personalised recommendations