Watershed scale assessment of rare earth elements in soils derived from sedimentary rocks

  • Bárbara de Albuquerque Pereira
  • Yuri Jacques Agra Bezerra da SilvaEmail author
  • Clístenes Williams Araújo do Nascimento
  • Ygor Jacques Agra Bezerra da Silva
  • Rennan Cabral Nascimento
  • Cácio Luiz Boechat
  • Ronny Sobreira Barbosa
  • Vijay P. Singh


Despite the rare earth elements (REEs) being considered as emerging contaminants, their natural values and possible anthropogenic enrichments in soils have not been studied well in Brazil. The intensive use of conditioners and fertilizers in agricultural frontiers from Brazilian Cerrado can increase the concentration of REE in soils of the region. In this context, the objectives of this study were to determine the natural content and establish quality reference values (QRV) for REEs in soils of a watershed from Brazilian Cerrado composed of sedimentary rocks and to evaluate the influence of agricultural cultivation and the spatial variability of these elements. Thirty and twenty-six composite soil samples were collected under native vegetation and soybean cultivation, respectively. The background concentrations followed the order (mg kg−1) Ce > Nd > La > Pr > Sm > Yb > Er > Eu > Dy. The QRVs established were as follows (mg kg−1): La (1.76), Ce (5.20), Pr (0.74), Nd (1.35), Sm (0.38), Eu (0.06), Dy (0.15), Er (0.12), and Yb (0.14). Lantanium, Ce, and Er exhibited strong spatial dependence, while Eu, Dy, and Yb showed weak or total absence of spatial dependence. The spherical model was most suitable for the spatial characteristics of REEs. The parent material, mainly characterized by soils derived from sedimentary rocks (i.e., sandstone), was the primordial source of REEs for soils and that there was no or little effect of agricultural practices on these levels. Our data reinforced the need for geochemical mapping at the watershed scale, since they are important conservation units.


Lanthanides Emerging contaminants Quality reference values Environmental quality Indicator kriging 



This research was supported by the Coordination for the Improvement of Higher Education Personnel (CAPES) that provided a scholarship to the first author.


  1. Alfaro, M. R., Nascimento, C. W. A., Biondi, C. M., Silva, Y. J. A. B., Silva, Y. J. A. B., de Aguiar Accioly, A. M., Montero, A., Ugarte, O. M., & Estevez, J. (2018). Rare-earth-element geochemistry in soils developed in different geological settings of Cuba. Catena, 162, 317–324.CrossRefGoogle Scholar
  2. Almeida Júnior, A. B., Nascimento, C. W. A., Biondi, C. M., Souza, A. D., & Barros, F. M. R. (2016). Background and reference values of metals in soils from Paraíba state, Brazil. Revista Brasileira de Ciência do Solo, 40, 1–13.CrossRefGoogle Scholar
  3. Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes, G., Leonardo, J., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728.CrossRefGoogle Scholar
  4. Biondi, C. M., Nascimento, C. W. A. D., Neta, F., de Brito, A., & Ribeiro, M. R. (2011). Concentrations of Fe, Mn, Zn, Cu, Ni and Co in benchmark soils of Pernambuco, Brazil. Revista Brasileira de Ciência do Solo, 35(3), 1057–1066.CrossRefGoogle Scholar
  5. Cambardella, C. A., Moorman, T. B., Parkin, T. B., Karlen, D. L., Novak, J. M., Turco, R. F., & Konopka, A. E. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5), 1501–1511.CrossRefGoogle Scholar
  6. Chakraborty, S., Man, T., Paulette, L., Deb, S., Li, B., Weindorf, D. C., & Frazier, M. (2017). Rapid assessment of smelter/mining soil contamination via portable X-ray fluorescence spectrometry and indicator kriging. Geoderma, 306, 108–119.CrossRefGoogle Scholar
  7. COMDEPI. (2002). Companhia de desenvolvimento do Piauí. Estudo de viabilidade para aproveitamento hidroagrícola do vale do rio Uruçuí Preto. TeresinaGoogle Scholar
  8. Conselho Nacional do Meio Ambiente—CONAMA. (2009). Resolução n°420/2009. Accessed 06 April 2018.
  9. Costa, R. D. S., Paula Neto, P., Campos, M. C. C., Nascimento, W. B., Nascimento, C. W. A., Silva, L. S., & Cunha, J. M. (2017). Natural contents of heavy metals in soils of the southern Amazonas state, Brazil. Semina Ciências Agrárias (online), 38, 3499–3514.CrossRefGoogle Scholar
  10. CPRM. (2010). Serviço Geológico do Brasil. Mapa Geológico do Estado do Piauí Geologia e recursos minerais do Estado do Piauí, Teresina: Serviço Geológico do Brasil, (available online:
  11. Dung, T. T. T., Cappuyns, V., Swennen, R., & Phung, N. K. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Environmental Science and Biotechnology, 12(4), 335–353.CrossRefGoogle Scholar
  12. Fadigas, F. D. S., Sobrinho, N., do Amaral, M. B., Mazur, N., dos Anjos, L. H., & Freixo, A. A. (2006). Proposition of reference values for natural concentration of heavy metals in Brazilian soils. Revista Brasileira de Engenharia Agrícola e Ambiental, 10(3), 699–705.CrossRefGoogle Scholar
  13. França, L. C. J., Lisboa, G. S., Silva, J. B. L., Júnior, F. R., Junior, V. T. M. M., & Cerqueira, C. L. (2016). Suitability for agricultural and forestry mechanization of the Uruçuí-Preto River Hydrographic Basin, Piauí, Brazil. Nativa, 4(4), 238–243.CrossRefGoogle Scholar
  14. Gao, Z., Fu, W., Zhang, M., Zhao, K., Tunney, H., & Guan, Y. (2016). Potentially hazardous metals contamination in soil-rice system and it’s spatial variation in Shengzhou City, China. Journal of Geochemical Exploration, 167, 62–69.CrossRefGoogle Scholar
  15. Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., & Sanganyado, E. (2018). Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Science of the Total Environment, 636, 299–313.CrossRefGoogle Scholar
  16. Hardy, M., & Cornu, S. (2006). Location of natural trace elements in silty soils using particle-size fractionation. Geoderma, 133(3-4), 295–308.CrossRefGoogle Scholar
  17. Hedrick, J. B. (1995). The global rare-earth cycle. Journal of Alloys and Compounds, 225(1-2), 609–618.CrossRefGoogle Scholar
  18. Hu, Z., Haneklaus, S., Sparovek, G., & Schnug, E. (2006). Rare earth elements in soils. Communications in Soil Science and Plant Analysis, 37(9-10), 1381–1420.CrossRefGoogle Scholar
  19. Huang, H., Lin, C., Yu, R., Yan, Y., Hu, G., & Wang, Q. (2019). Spatial distribution and source appointment of rare earth elements in paddy soils of Jiulong River Basin, Southeast China. Journal of Geochemical Exploration, 200, 213–220.CrossRefGoogle Scholar
  20. Johnston, K., Ver Hoef, J. M., Krivoruchko, K., & Lucas, N. (2001). Using ArcGIS geostatistical analyst (Vol. 380). Redlands: Esri.Google Scholar
  21. Jordens, A., Cheng, Y. P., & Waters, K. E. (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97–114.CrossRefGoogle Scholar
  22. Jovein, E. B., & Hosseini, S. M. (2017). Predicting saltwater intrusion into aquifers in vicinity of deserts using spatio-temporal kriging. Environmental Monitoring and Assessment, 189(2), 81.CrossRefGoogle Scholar
  23. Kobayashi, Y., Ikka, T., Kimura, K., Yasuda, O., & Koyama, H. (2007). Characterisation of lanthanum toxicity for root growth of Arabidopsis thaliana from the aspect of natural genetic variation. Functional Plant Biology, 34(11), 984–994.CrossRefGoogle Scholar
  24. Laveuf, C., & Cornu, S. (2009). A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma, 154(1-2), 1–12.CrossRefGoogle Scholar
  25. Leonardo, L., Damatto, S. R., Gios, B. R., & Mazzilli, B. P. (2014). Lichen specie Canoparmelia texana as bioindicator of environmental impact from the phosphate fertilizer industry of São Paulo, Brazil. Journal of Radioanalytical and Nuclear Chemistry, 299(3), 1935–1941.CrossRefGoogle Scholar
  26. Li, X. Y., Liu, L. J., Wang, Y. G., Luo, G. P., Chen, X., & Yang, X. L. (2013). Heavy metal contamination of urban soil in an old industrial city (Shengyang) in Northeast China. Geoderma, 192, 50–58.CrossRefGoogle Scholar
  27. Loell, M., Albrecht, C., & Felix-Henningsen, P. (2011). Rare earth elements and relation between their potential bioavailability and soil properties, Nidda catchment (Central Germany). Plant and Soil, 349(1-2), 303–317.CrossRefGoogle Scholar
  28. Markert, B., & Li, Z. D. (1991). Natural background concentrations of rare-earth elements in a forest ecosystem. Science of the Total Environment, 103(1), 27–35.CrossRefGoogle Scholar
  29. Mazhari, S. A., & Attar, R. S. (2015). Rare earth elements in surface soils of the Davarzan area, NE of Iran. Geoderma Regional, 5, 25–33.CrossRefGoogle Scholar
  30. Medeiros, R. M., & Francisco, P. R. M. (2016). Estudo Climatológico da Bacia Hidrográfica do Rio Uruçuí Preto-Piauí. Campina Grande: Ed. EDUFCG.Google Scholar
  31. Medeiros, R. M., da Silva, V. D. P. R., & Gomes Filho, M. F. (2013). Análise hidroclimática da bacia hdrográfica do rio uruçuí preto-pi. Revista de Engenharia e Tecnologia, 5(4).Google Scholar
  32. National Institute OF Standards and Technology—NIST. Standard Reference Materials-SRM 2709, 2710 and 2711 Addendum Issue Date: 18 January 2002.Google Scholar
  33. Pagano, G., Guida, M., Tommasi, F., & Oral, R. (2015). Health effects and toxicity mechanisms of rare earth elements—knowledge gaps and research prospects. Ecotoxicology and Environmental Safety, 115, 40–48.CrossRefGoogle Scholar
  34. Paye, H. S., de Mello, J. W., de Magalhães Mascarenhas, G. R. L., & Gasparon, M. (2016). Distribution and fractionation of the rare earth elements in Brazilian soils. Journal of Geochemical Exploration, 161, 27–41.CrossRefGoogle Scholar
  35. Pérez, D. V., Saldanha, M. D. C., Meneguelli, N. D. A., Moreira, J. C., & Vaitsman, D. S. (1997). Geoquímica de alguns solos brasileiros. EMBRAPA-CNPS.Google Scholar
  36. Preston, W., Araújo do Nascimento, C. W., Miranda Biondi, C., de Souza Junior, V. S., Ramos da Silva, W., & Alves Ferreira, H. (2014). Valores de referência de qualidade para metais pesados em solos do Rio Grande do Norte. Revista Brasileira de Ciência do Solo, 38(3), 1028–1037.CrossRefGoogle Scholar
  37. Ramos, S. J., Dinali, G. S., Oliveira, C., Martins, G. C., Moreira, C. G., Siqueira, J. O., & Guilherme, L. R. (2016). Rare earth elements in the soil environment. Current Pollution Reports, 2(1), 28–50.CrossRefGoogle Scholar
  38. Richer-de-Forges, A. C., Saby, N. P., Mulder, V. L., Laroche, B., & Arrouays, D. (2017). Probability mapping of iron pan presence in sandy podzols in South-West France, using digital soil mapping. Geoderma Regional, 9, 39–46.CrossRefGoogle Scholar
  39. Sadeghi, M., Morris, G. A., Carranza, E. J. M., Ladenberger, A., & Andersson, M. (2013). Rare earth element distribution and mineralization in Sweden: an application of principal component analysis to FOREGS soil geochemistry. Journal of Geochemical Exploration, 133, 160–175.CrossRefGoogle Scholar
  40. Salminen, R. B., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., Duris, M., Gilucis, A., Gregorauskiene, V., Halamic, J., Heitzmann, P., Lima, A., Jordan, G., Klaver, G., Klein, P., Lis, J., Locutura, J., Marsina, K., Mazreku, A., O’Connor, P. J., Olsson, S. A., Ottesen, R. T., Petersell, V., Plant, J. A., Reeder, S., Salpeteur, I., Sandström, H., Siewers, U., Steenfelt, A., & Tarvainen, T. (Eds.). (2005). FOREGS Geochimical Atlas of Europe, part 1: background information, methodology and maps. Geological Survey of Finland.Google Scholar
  41. Shah, M. H., Iqbal, J., Shaheen, N., Khan, N., Choudhary, M. A., & Akhter, G. (2012). Assessment of background levels of trace metals in water and soil from a remote region of Himalaya. Environmental Monitoring and Assessment, 184(3), 1243–1252.CrossRefGoogle Scholar
  42. Silva, Y. J. A. B. D., Nascimento, C. W. A. D., Silva, Y. J. A. B. D., Biondi, C. M., & Silva, C. M. C. A. C. (2016). Rare earth element concentrations in Brazilian benchmark soils. Revista Brasileira de Ciência do Solo, 40.Google Scholar
  43. Silva, Y. J. A. B., do Nascimento, C. W. A., da Silva, Y. J. A. B., Amorim, F. F., Cantalice, J. R. B., Singh, V. P., & Collins, A. L. (2018a). Bed and suspended sediment-associated rare earth element concentrations and fluxes in a polluted Brazilian river system. Environmental Science and Pollution Research, 25(34), 34426–34437.CrossRefGoogle Scholar
  44. Silva, C. M. C. A. C., Barbosa, R. S., Nascimento, C. W. A. D., Silva, Y. J. A. B. D., & Silva, Y. J. A. B. D. (2018b). Geochemistry and spatial variability of rare earth elements in soils under different geological and climate patterns of the Brazilian Northeast. Revista Brasileira de Ciência do Solo, 42.Google Scholar
  45. Silva, F. B. V., Nascimento, C. W. A., Alvarez, A. M., & Araújo, P. R. M. (2019). Inputs of rare earth elements in Brazilian agricultural soils via P-containing fertilizers and soil correctives. Journal of Environmental Management, 232, 90–96.CrossRefGoogle Scholar
  46. Taylor, S. R., & McLennan, S. M. (1985). An examination of the geochemical record preserved in sedimentary rocks. The Continental Crust: Its Composition and Evolution.Google Scholar
  47. Tazikeh, H., Khormali, F., Amini, A., & Motlagh, M. B. (2018). Geochemistry of soils derived from selected sedimentary parent rocks in Kopet Dagh, North East Iran. Journal of Geochemical Exploration, 194, 52–70.CrossRefGoogle Scholar
  48. Teixeira, P. C., Donagema, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solo. Rio de Janeiro (4th ed.). Brasília: EMBRAPA 573 p.Google Scholar
  49. Tesfahunegn, G. B., Tamene, L., & Vlek, P. L. (2011). Catchment-scale spatial variability of soil properties and implications on site-specific soil management in northern Ethiopia. Soil and Tillage Research, 117, 124–139.CrossRefGoogle Scholar
  50. Thuong, N. T., Yoneda, M., Ikegami, M., & Takakura, M. (2013). Source discrimination of heavy metals in sediment and water of To Lich River in Hanoi City using multivariate statistical approaches. Environmental Monitoring and Assessment, 185(10), 8065–8075.CrossRefGoogle Scholar
  51. Turra, C., & Bacchi, M. A. (2011). Evaluation on rare earth elements of Brazilian agricultural supplies. Journal of Environmental Chemistry and Ecotoxicology, 3(4), 86–92.Google Scholar
  52. Tyler, G., & Olsson, T. (2002). Conditions related to solubility of rare and minor elements in forest soils. Journal of Plant Nutrition and Soil Science, 165(5), 594–601.CrossRefGoogle Scholar
  53. United States Environmental Protection Agency–USEPA. (1998). Method 3051A: microwave assisted acid digestion of sediments, sludges, soils, and oils. SW-846: test methods for evaluation of solid waste physical and chemical methods, Office of Solid Waste, US.Google Scholar
  54. Vermeire, M. L., Cornu, S., Fekiacova, Z., Detienne, M., Delvaux, B., & Cornélis, J. T. (2016). Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils. Chemical Geology, 446, 163–174.CrossRefGoogle Scholar
  55. Wang, L., & Liang, T. (2016). Anomalous abundance and redistribution patterns of rare earth elements in soils of a mining area in Inner Mongolia, China. Environmental Science and Pollution Research, 23(11), 11330–11338.CrossRefGoogle Scholar
  56. Zhang, H., Feng, J., Zhu, W., Liu, C., Xu, S., Shao, P., Wu, D., Yang, W., & Gu, J. (2000). Chronic toxicity of rare-earth elements on human beings. Biological Trace Element Research, 73(1), 1–17.CrossRefGoogle Scholar
  57. Zhuang, M., Zhao, J., Li, S., Liu, D., Wang, K., Xiao, P., Yu, L., Jiang, Y., Song, J., Zhou, J., Wang, L., & Wang, L. (2017). Concentrations and health risk assessment of rare earth elements in vegetables from mining area in Shandong, China. Chemosphere, 168, 578–582.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bárbara de Albuquerque Pereira
    • 1
  • Yuri Jacques Agra Bezerra da Silva
    • 1
    Email author
  • Clístenes Williams Araújo do Nascimento
    • 2
  • Ygor Jacques Agra Bezerra da Silva
    • 2
  • Rennan Cabral Nascimento
    • 2
  • Cácio Luiz Boechat
    • 1
  • Ronny Sobreira Barbosa
    • 1
  • Vijay P. Singh
    • 3
    • 4
  1. 1.Agronomy DepartmentFederal University of Piaui (UFPI)Bom JesusBrazil
  2. 2.Agronomy DepartmentFederal Rural University of Pernambuco (UFRPE)RecifeBrazil
  3. 3.Biological and Agricultural Engineering Department and Zachry Department of Civil EngineeringTexas A&M UniversityCollege StationUSA
  4. 4.National Water CenterUAE UniversityAl AinUnited Arab Emirates

Personalised recommendations