Advertisement

Assessing climate boundary shifting under climate change scenarios across Nepal

  • Rocky TalchabhadelEmail author
  • Ramchandra Karki
Article
  • 120 Downloads

Abstract

This study assesses the climate boundary shifts from the historical time to near/mid future by using a slightly modified Köppen–Geiger (KG) classification scheme and presents comprehensive pictures of historical (1960–1990) and projected near/mid future (1950s: 2040–2060/1970s: 2060–2080) climate classes across Nepal. Ensembles of three selected general circulation models (GCMs) under two Representative Concentration Pathways (RCP 4.5 and RCP 8.5) were used for projected future analysis. During the 1950s, annual average temperature is expected to increase by 2.5 °C under RCP 8.5. Similarly, during the 1970s, it is even anticipated to rise by 3.6 °C under RCP 8.5. The rate of temperature rise is higher in the non-monsoon period than in monsoon period. During the 1970s, annual precipitation is projected to increase by 8.1% under RCP 8.5. Even though the precipitation is anticipated to increase in the future in annual scale, winter seasons are estimated to be drier by more than 15%. This study shows significant increments of tropical (Am and Aw) and arid (BSk) climate types and reductions of temperate (Cwa and Cwb) and polar (ET and EF). Noticeably, the reduction of the areal coverage of polar frost (EF) is considerably high. In general, about 50% of the country’s area is covered by the temperate climate (Cwa and Cwb) in baseline scenario and it is expected to reduce to 45% under RCP 4.5 and 42.5% under RCP 8.5 during the 1950s, and 42% under RCP 4.5 and 39% under RCP 8.5 during the 1970s. Importantly, the degree of climate boundary shifts is quite higher under RCP 8.5 than RCP 4.5, and likewise, the degree is higher during the 1970s than the 1950s. We believe this study to facilitate the identification of regions in which impacts of climate change are notable for crop production, soil management, and disaster risk reduction, requiring a more detailed assessment of adaptation measures. The assessment of climate boundary shifting can serve as valuable information for stakeholders of many disciplines like water, climate, transport, energy, environment, disaster, development, agriculture, and tourism.

Keywords

Climate classification Köppen–Geiger (KG) Nepal Representative Concentration Pathway (RCP) WorldClim 

Notes

Acknowledgements

The authors would like to thank the DHM, Government of Nepal, for the permission to use meteorological data.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10661_2019_7644_MOESM1_ESM.docx (92 kb)
ESM 1 (DOCX 92.1 kb)

References

  1. Acharya, B. K., Cao, C., Xu, M., Khanal, L., Naeem, S., & Pandit, S. (2018). Present and future of dengue fever in Nepal: mapping climatic suitability by ecological niche model. International Journal of Environmental Research and Public Health, 1–15.  https://doi.org/10.3390/ijerph15020187.CrossRefGoogle Scholar
  2. Aparecido LE de, O., Rolim G de, S., Richetti, J., de, S. P. S., & Johann, J. A. (2016). Köppen, Thornthwaite and Camargo climate classifications for climatic zoning in the State of Paraná, Brazil. Ciência e Agrotecnologia, 40(4), 405–417.  https://doi.org/10.1590/1413-70542016404003916.CrossRefGoogle Scholar
  3. Aryal, A., Brunton, D., & Raubenheimer, D. (2014). Impact of climate change on human-wildlife-ecosystem interactions in the Trans-Himalaya region of Nepal. Theoretical and Applied Climatology, 115, 517–529.  https://doi.org/10.1007/s00704-013-0902-4.CrossRefGoogle Scholar
  4. Baidya, S. K., Shrestha, M. L., & Sheikh, M. M. (2008). Trends in daily climatic extremes of temperature and precipitation in Nepal. Journal of Hydrology and Meteorology, 5(1), 38–51.Google Scholar
  5. Basalirwa, C. P. K. (1995). Delineation of Uganda into climatological rainfall zones using the method of principal component analysis. International Journal of Climatology, 15(10), 1161–1177.  https://doi.org/10.1002/joc.3370151008.CrossRefGoogle Scholar
  6. Beck, C., Grieser, J., Kottek, M., Rubel, F., & Rudolf, B. (2006). Characterizing global climate change by means of Koppen climate classification. In Annual Report. Duetscher Wetterdienst. Hamburg, Germany.Google Scholar
  7. Beck, H. E., Zimmermann, N. E., Mcvicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Data descriptor: Present and future Köppen-Geiger climate classification maps at 1 -km resolution. Scientific Data, 5, 1–12.  https://doi.org/10.1038/sdata.2018.214.CrossRefGoogle Scholar
  8. Bharati, L., Gurung, P., Maharjan, L., & Bhattarai, U. (2016). Past and future variability in the hydrological regime of the Koshi Basin, Nepal. Hydrological Sciences Journal, 61(1), 79–93.  https://doi.org/10.1080/02626667.2014.952639.CrossRefGoogle Scholar
  9. Bhatta, B., Shrestha, S., Shrestha, P. K., & Talchabhadel, R. (2019). Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. CATENA, 181(May), 104082.  https://doi.org/10.1016/j.catena.2019.104082.CrossRefGoogle Scholar
  10. Bohlinger, P. (2018). A comprehensive view on trends in extreme precipitation in Nepal and their spatial distribution. International Journal of Climatology, 38, 1833–1845.  https://doi.org/10.1002/joc.5299.CrossRefGoogle Scholar
  11. Dahal, V., Shakya, N. M., & Bhattarai, R. (2016). Estimating the impact of climate change on water availability in Bagmati Basin, Nepal. Environmental Processes, 3(1), 1–17.  https://doi.org/10.1007/s40710-016-0127-5.CrossRefGoogle Scholar
  12. de Camargo, A. P. (1991). Classificação climática para zoneamento de aptidão agroclimática. Revista Brasileira de Agrometeorologia, 8, 126–131.Google Scholar
  13. Dhimal, M., Hara, R. B. O., Karki, R., Thakur, G. D., Kuch, U., & Ahrens, B. (2014). Spatio-temporal distribution of malaria and its association with climatic factors and vector-control interventions in two high-risk districts of Nepal. Malaria Journal, 13, 1–14.CrossRefGoogle Scholar
  14. Feddema, J. J. (2005). A revised Thornthwaite-type global climate classification. Physical Geography, 26(6), 442–466.  https://doi.org/10.2747/0272-3646.26.6.442.CrossRefGoogle Scholar
  15. Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315.  https://doi.org/10.1002/joc.5086.CrossRefGoogle Scholar
  16. Flohn, H. (1950). Neue Anschauungen über die allgemeine zirkulation der atmosphareund ihre klimatische bedeutung. Erdkunde, 4, 141–162.CrossRefGoogle Scholar
  17. Fraedrich, K., Gerstengarbe, F. W., & Werner, P. C. (2001). Climate shifts during the last century. Climate Change, 50, 405–417.Google Scholar
  18. Geiger, R. (1954). Klassifikation der klimate nach W. Köppen. In J. Bartels & P. Bruggencate (Eds.), Landolt- Börnstein – Zahlenwerte und Funktionen aus physik, chemie, astronomie (Geophysik und Technik, Alte Serie 3) (pp. 603–607).Google Scholar
  19. Gnanadesikan, A., & Stouffer, R. J. (2006). Diagnosing atmosphere-ocean general circulation model errors relevant to the terrestrial biosphere using the Köppen climate classification. Geophysical Research Letters, 33, 1–5.  https://doi.org/10.1029/2006GL028098.CrossRefGoogle Scholar
  20. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.  https://doi.org/10.1002/joc.1276.CrossRefGoogle Scholar
  21. HMG. (1975). Mechidekhi Mahakali (I-IV Volumes). Department of Information, Ministry of Communication.Google Scholar
  22. Holdridge, L. R. (1967). Life zone ecology. San Jose: Costa Rica, Tropical Science Center.Google Scholar
  23. Jha, S., & Karn, A. (2001). Climatic analogues for the administrative districts of Nepal. Tribhuvan University Journal, 55–64.Google Scholar
  24. Júnior, A. D. S., & De Carvalho, L. G. (2012). Application of the Köppen classification for climatic zoning in the state of Minas Gerais, Brazil. Theoretical and Applied Climatology, 108(1-2), 1–7.  https://doi.org/10.1007/s00704-011-0507-8.CrossRefGoogle Scholar
  25. Jylhä, K., Tuomenvirta, H., Ruosteenoja, K., Niemi-Hugaerts, H., Keisu, K., & Karhu, J. A. (2010). Observed and projected future shifts of climatic zones in Europe and their use to visualize climate change information. Weather, Climate, and Society, 2(2), 148–167.  https://doi.org/10.1175/2010wcas1010.1.CrossRefGoogle Scholar
  26. Kadel, I., Yamazaki, T., Iwasaki, T., & Abdillah, M. R. (2018). Projection of future monsoon precipitation over the central Himalayas by CMIP5 models under warming scenarios. Climate Research, 75, 1–21.CrossRefGoogle Scholar
  27. Kalvova, J., Halenka, T., Bezpalcova, K., & Nemesova, I. (2003). Köppen climate types in observed and simulated climates. Studia Geophysica et Geodaetica, 47, 185–202.CrossRefGoogle Scholar
  28. Karki, R., Talchabhadel, R., Aalto, J., & Baidya, S. K. (2016). New climatic classification of Nepal. Theoretical and Applied Climatology, 125(3–4), 799–808.  https://doi.org/10.1007/s00704-015-1549-0.CrossRefGoogle Scholar
  29. Karki, R., Hasson, S., Schickhoff, U., & Scholten, T. (2017). Rising precipitation extremes across Nepal. Climate, 5(4), 1–25.  https://doi.org/10.3390/cli5010004.CrossRefGoogle Scholar
  30. Köppen, W. (1884). Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet (The thermal zones of the Earth according to the duration of hot, moderate and cold periods and of the impac). Meteorol. Z., 1, 215–226.Google Scholar
  31. Köppen, W. (1900). Versuch einer Klassifikation der Klimate, Vorzugsweise nach ihren Beziehungen zur Pflanzenwelt [Attempted climate classification in relation to plant distributions]. Geographische Zeitschrift, 6, 593–611 657–679.Google Scholar
  32. Köppen, W. (1918). Klassifikation der Klimate nach Temperatur, Niederschlag und Jahresablauf (Classification of climates according to temperature, precipitation and seasonal cycle). Petermanns Geogr. Mitt., 64, 193–203 243–248.Google Scholar
  33. Köppen W. (1936). Das geographische System der Klimate. Handbuch der Klimatologie (c): 7–30.  https://doi.org/10.3354/cr01204.CrossRefGoogle Scholar
  34. Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263.  https://doi.org/10.1127/0941-2948/2006/0130.CrossRefGoogle Scholar
  35. Kriticos, D. J., Webber, B. L., Leriche, A., Ota, N., Macadam, I., Bathols, J., & Scott, J. K. (2012). CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, 3, 53–64.  https://doi.org/10.1111/j.2041-210X.2011.00134.x.CrossRefGoogle Scholar
  36. Lohmann, U., Sausen, R., Bengtsson, L., Cubasch, U., Perlwitz, J., & Roecknerl, E. (1993). The Koppen climate classification as a diagnostic tool for general circulation models. Climate Research, 3, 177–193.CrossRefGoogle Scholar
  37. Mishra, Y., Nakamura, T., Babel, M. S., Ninsawat, S., & Ochi, S. (2018). Impact of climate change on water resources of the Bheri River Basin, Nepal. Water (Switzerland), 10(2), 1–21.  https://doi.org/10.3390/w10020220.CrossRefGoogle Scholar
  38. Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756.  https://doi.org/10.1038/nature08823.CrossRefGoogle Scholar
  39. Nayava, J. L. (1975). Climates of Nepal. The Himalayan Review VII, 9–12.Google Scholar
  40. Pandey, V. P., Dhaubanjar, S., Bharati, L., & Thapa, B. R. (2019). Hydrological response of Chamelia watershed in Mahakali Basin to climate change. Science of the Total Environment. Elsevier B.V., 650, 365–383.  https://doi.org/10.1016/j.scitotenv.2018.09.053.CrossRefGoogle Scholar
  41. Peel, M. C., Finlayson, B. L., & Mcmahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633–1644.CrossRefGoogle Scholar
  42. Russell, R. J. (1931). Dry climates of the United States: I climatic map. University of California, Publications in Geography, 5, 1–41.Google Scholar
  43. Schickhoff, U., Bobrowski, M., Böhner, J., Bürzle, B., Chaudhary, R. P., Gerlitz, L., Heyken, H., Lange, J., Muller, M., Scholten, T., Schwab, N., & Wedegartner, R. (2015). Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth System Dynamics, 6, 245–265.  https://doi.org/10.5194/esd-6-245-2015.CrossRefGoogle Scholar
  44. Shrestha, A. B., & Aryal, R. (2011). Climate change in Nepal and its impact on Himalayan glaciers. Regional Environmental Change, 11, 65–77.  https://doi.org/10.1007/s10113-010-0174-9.CrossRefGoogle Scholar
  45. Shrestha, A. B., Wake, C. P., Mayewski, P. A., & Dibb, J. E. (1999). Maximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 1971 – 94. Journal of Climate, 12, 2775–2786.CrossRefGoogle Scholar
  46. Shrestha, U. B., Gautam, S., & Bawa, K. S. (2012). Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE, 7(5), 1–10.  https://doi.org/10.1371/journal.pone.0036741.CrossRefGoogle Scholar
  47. Shrestha, S., Shrestha, M., & Babel, M. S. (2016). Modelling the potential impacts of climate change on hydrology and water resources in the Indrawati River Basin, Nepal. Environmental Earth Sciences, 75(4), 1–13.  https://doi.org/10.1007/s12665-015-5150-8.CrossRefGoogle Scholar
  48. Stern, H., DeHoedt, G. (1999). Objective classification of Australian climates. 8th Conf. on Aviation, Range and Aerospace Meteorology. American Meteorological Society: Dallas, Texas, 87–91.Google Scholar
  49. Talchabhadel, R., Karki, R., Thapa, B. R., Maharjan, M., & Parajuli, B. (2018a). Spatio-temporal variability of extreme precipitation in Nepal. International Journal of Climatology, 38, 4296–4313.  https://doi.org/10.1002/joc.5669.CrossRefGoogle Scholar
  50. Talchabhadel, R., Nakagawa, H., & Kawaike, K. (2018b). Spatial and temporal variability of precipitation in southwestern Bangladesh. Journal of Japanese Society of Civil Engineers, Ser B1 (Hydraulic Engineering), 74(5), 289–294.Google Scholar
  51. Talchabhadel, R., Karki, R., Yadav, M., Maharjan, M., Aryal, A., & Thapa, B. R. (2019). Spatial distribution of soil moisture index across Nepal: A step towards sharing climatic information for agricultural sector. Theoretical and Applied Climatology.  https://doi.org/10.1007/s00704-019-02801-3.CrossRefGoogle Scholar
  52. Thapa, G. J., Wikramanayake, E., & Forrest, J. (2015). Climate-change impacts on the biodiversity of the Terai Arc Landscape and the Chitwan-Annapurna Landscape. Kathmandu.Google Scholar
  53. Thornthwaite, C. W. (1948). An Approach toward a rational classification of climate. Geographical Review, 38(1), 55–94.  https://doi.org/10.2307/210739.CrossRefGoogle Scholar
  54. Turner, A. G., & Annamalai, H. (2012). Climate change and the South Asian summer monsoon. Nature Climate Change, 2(8), 587–595.  https://doi.org/10.1038/nclimate1495.CrossRefGoogle Scholar
  55. Uddin, K., Matin, M. A., & Maharjan, S. (2018). Assessment of land cover change and its impact on changes in soil erosion risk in Nepal. sustainability, 10, 1–20.  https://doi.org/10.3390/su10124715.CrossRefGoogle Scholar
  56. Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Nakicenovic, N., Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: An overview. Climate Change, 109, 5–31.  https://doi.org/10.1007/s10584-011-0148-z.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Hydrology and Meteorology, Government of NepalKathmanduNepal
  2. 2.Disaster Prevention Research InstituteKyoto UniversityKyotoJapan
  3. 3.Institute of GeographyUniversity of HamburgHamburgGermany

Personalised recommendations