Advertisement

Degradation of haloacetic acids with the Fenton-like and analysis by GC-MS: use of bioassays for monitoring of genotoxic, mutagenic and cytotoxic effects

  • Amanda Oliveira Mourão
  • Diego Francis Silva
  • Mariandry Rodriguez
  • Thamyris Souza Torres
  • Elton Santos Franco
  • Valter Lúcio Pádua
  • Márcia Cristina da Silva Faria
  • Luiz Fernando Oliveira Maia
  • Jairo Lisboa RodriguesEmail author
Article
  • 67 Downloads

Abstract

In this study, a method was developed to evaluate the degradation of haloacetic acids (HAAs) in water by a heterogenous Fenton-like process catalyzed by cobalt-doped magnetite nanoparticles (Fe3 − xCoxO4), extraction of the contaminants by liquid-liquid extraction (LLE), and analysis by gas chromatography-mass spectrometry (GC-MS). The developed method was efficient in the degradation of HAAs, with the following degradation values: 63%, 62%, 30%, 39%, 37%, 50%, 84%, 41%, and 79% for monochloroacetic acid, monobromoacetic acid, dichloroacetic acid, trichloroacetic acid, bromochloroacetic acid, dibromoacetic acid, bromodichloroacetic acid, dibromochloroacetic acid, and tribromoacetic acid compounds, respectively. Through the application of the Allium cepa test, the cytotoxicity, genotoxicity, and mutagenicity of HAAs were evaluated. The results confirm its genotoxic and mutagenic effects on Allium cepa meristematic cells. Through this study, it was possible to verify the effectiveness of the developed method and its potential as a proposal for environmental remediation.

Keywords

Haloacetic acids Fenton-like Degradation Water treatment Bioassay 

Notes

Acknowledgments

The authors are grateful to CAPES, FAPEMIG, CNPq, FUNASA, and UFVJM for financial support and fellowships.

References

  1. Bello, M. M., Raman, A. A. A., & Asghar, A. (2018). A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process Safety and Environment Protection.  https://doi.org/10.1016/j.psep.2018.03.034.
  2. Bianchi, J., Mantovani, M. S., & Marin-Morales, M. A. (2015). Analysis of the genotoxic potential of low concentrations of Malathion on the Allium cepa cells and rat hepatoma tissue culture. Journal of Environmental Sciences, 36, 102–111.  https://doi.org/10.1016/j.jes.2015.03.034.CrossRefGoogle Scholar
  3. BRASIL. Portaria Ministério da Saúde n° 05, de 28 de setembro de 2017. Consolidação das normas sobre as ações e os serviços de saúde do Sistema Único de Saúde. Diário Oficial da UniãoGoogle Scholar
  4. Chen, L., Chen, C., Wang, P., & Song, T. (2017). Mechanisms of cellular effects directly induced by magnetic nanoparticles under magnetic fields: review article (pp. 1–13). London: Journal Of Nanomaterials: Hindawi.  https://doi.org/10.1155/2017/1564634.CrossRefGoogle Scholar
  5. Chen, Y., Chen, Y., Li, Y., Wu, Y., Zhu, F., Zeng, G., Zhang, J., & Li, H. (2018). Application of Fenton pretreatment on the degradation of rice straw by mixed culture of Phanerochaete chrysosporium and Aspergillus niger. Industrial Crops and Products, 112, 290–295.  https://doi.org/10.1016/j.indcrop.2017.12.005.CrossRefGoogle Scholar
  6. Chiavelli, L. U. R. (2014). Ácidos Haloacéticos em água potável: a formação de subprodutos da desinfecção durante o tratamento da água. Maringá: Novas Edições Acadêmicas.Google Scholar
  7. Cortés, C., & Marcos, R. (2018). Genotoxicity of disinfection byproducts and disinfected waters: a review of recent literature. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 831, 1–12.  https://doi.org/10.1016/j.mrgentox.2018.04.005.CrossRefGoogle Scholar
  8. Debnath, P., Mondal, A., Hajra, A., Das, C., & Mondal, N. K. (2018). Cytogenetic effects of silver and gold nanoparticles on Allium cepa roots. Journal, Genetic Engineering & Biotechnology, 16, 519–526.  https://doi.org/10.1016/j.jgeb.2018.07.007.CrossRefGoogle Scholar
  9. Dwivedi, S., Siddiqui, M. A., Farshori, N. N., Ahamed, M., Musarrat, J., & Al-Khedhairy, A. A. (2014). Synthesis, characterization and toxicological evaluation of iron oxide nanoparticles in human lung alveolar epithelial cells. Colloids and Surfaces B: Biointerfaces, 122, 209–215.  https://doi.org/10.1016/j.colsurfb.2014.06.064.CrossRefGoogle Scholar
  10. Esteves, L. C. R., Oliveira, T. R. O., Junior, E. C. S., Bomfeti, C. A., Gonçalves, A. M., Oliveira, L. C. A., Junior, F. B., Pereira, M. C., & Rodrigues, J. L. (2015). A fast and environment-friendly method for determination of chemical oxygen demand by using the heterogeneous Fenton-like process (H2O2/Fe3-xCoxO4 nanoparticles) as an oxidant. Talanta, 135, 75–80.  https://doi.org/10.1016/j.talanta.2014.11.055.CrossRefGoogle Scholar
  11. Franco, E. S., Pádua, V. L., Rodriguez, M. D. V., Silva, D. F., Marcelo, L., Pereira, M. C., Silva, P. H. G., Santanta Júnior, I. C., Rocha, B. A., Camargo, J. A., Mourão, A. O., & Rodrigues, J. L. (2019). A simple liquid-liquid extraction-gas chromatography-mass spectrometry method for the determination of haloacetic acids in environmental samples: Application in water with Microcystis aeruginosa cells. Microchemical Journal, 150, 1–5.  https://doi.org/10.1016/j.microc.2019.104088.
  12. Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., Ploeg, M., Zee, S. E. A. T. M., & Ritsema, C. J. (2015). Emerging pollutants in the environment: a challenge for water resource management. International Soil and Water Conservation Research, 3(1), 57–65.  https://doi.org/10.1016/j.iswcr.2015.03.002.CrossRefGoogle Scholar
  13. Grant, W. F. (1982). Chromosome aberration assays in Allium. A report of U.S. Environmental Protection Agency Gene- Tox Program. Mutation Research, 99(80), 273–291.  https://doi.org/10.1016/0165-1110(82)90046-X.CrossRefGoogle Scholar
  14. Hong, Y., Song, H., & Karanfil, T. (2013). Formation of haloacetic acids from dissolved organic matter fractions during chloramination. Water Research, 47(3), 1147–1155.  https://doi.org/10.1016/j.watres.2012.11.025.CrossRefGoogle Scholar
  15. Kang, Y. W., & Hwang, K. Y. (2000). Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Research, 34(10), 2786–2790.  https://doi.org/10.1016/S0043-1354(99)00388-7.CrossRefGoogle Scholar
  16. Kumari, M., Mukherjee, A., & Chandrasekaran, N. (2009). Genotoxicity of silver nanoparticles in Allium cepa. Science of The Total Environmental, 407, 5243–5246.  https://doi.org/10.1016/j.scitotenv.2009.06.024.CrossRefGoogle Scholar
  17. Leme, D. M., & Marin-Morales, M. A. (2008). Chromosome aberration and micronucleus frequencies in Allium cepa cells exposed to petroleum polluted water-a case study. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 650(1), 80–86.  https://doi.org/10.1016/j.mrgentox.2007.10.006.CrossRefGoogle Scholar
  18. Leme, D. M., & Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: a review on its application. Mutation Research, Reviews in Mutation Research, 682(1), 71–81.  https://doi.org/10.1016/j.mrrev.2009.06.002.CrossRefGoogle Scholar
  19. Liang, X., Zhong, Y., Zhu, S., Zhu, J., Yuan, P., He, H., & Zhang, J. (2010). The decolorization of Acid Orange II in non-homogeneous Fenton reaction catalyzed by natural vanadium-titanium magnetite. Journal of Hazardous Materials, 181(1–3), 112–120.  https://doi.org/10.1016/j.jhazmat.2010.04.101.CrossRefGoogle Scholar
  20. Lima, G. M. (2014). Desenvolvimento de correlação de formação de ácidos haloacéticos em água contendo substância húmica oxidada com cloro. Dissertação de mestrado, Universidade de Ribeirão Preto.Google Scholar
  21. Liu, Y., & Mou, S. (2004). Determination of bromate and chlorinated haloacetic acids in bottled drinking water with chromatographic methods. Chemosphere, 55(9), 1253–1258.  https://doi.org/10.1016/j.chemosphere.2003.12.023.CrossRefGoogle Scholar
  22. Mangalampalli, B., Dumala, N., & Grover, P. (2018). Allium cepa root tip assay in assessment of toxicity of magnesium oxide nanoparticles and microparticles. Journal of Environmental Sciences, 66, 125–137.  https://doi.org/10.1016/j.jes.2017.05.012.CrossRefGoogle Scholar
  23. Matta, R., Hanna, K., & Chiron, S. (2007). Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals. Science of the Total Environment, 385(1–3), 242–251.  https://doi.org/10.1016/j.scitotenv.2007.06.030.CrossRefGoogle Scholar
  24. Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2014). A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3–27.  https://doi.org/10.1016/j.watres.2014.08.053.CrossRefGoogle Scholar
  25. Plewa, M. J., Kargalioglu, Y., Vankerk, D., Minear, R. A., & Wagner, E. D. (2002). Mammalian cell cytotoxicity and genotoxicity analysis of drinking water disinfection by-products. Environmental and Molecular Mutagenesis, 40(2), 134–142.  https://doi.org/10.1002/em.10092.CrossRefGoogle Scholar
  26. Rahman, Q., Lohani, M., Doop, E., Pemsel, H., Jonas, L., Weiss, D. G., & Schiffmann, D. (2002). Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environmental Health Perspectives, 110(8), 797–800.  https://doi.org/10.1289/ehp.02110797.CrossRefGoogle Scholar
  27. Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., & Demarini, D. M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutation Research, 636(1–3), 178–242.  https://doi.org/10.1016/j.mrrev.2007.09.00.CrossRefGoogle Scholar
  28. Schulte, P., Bayer, A., Kuhn, F., Luy, T., & Volkmer, M. (1995). H2O2 / O3 , H2O2 / UV and H2O2 / Fe 2+ processes for the oxidation of hazardous wastes. Ozone: Science & Engineering, 17(2), 119–134.  https://doi.org/10.1080/01919519508547541.CrossRefGoogle Scholar
  29. Usman, M., Faure, P., Hanna, K., Abdelmoula, M., & Ruby, C. (2012). Application of magnetite catalyzed chemical oxidation (Fenton-like and persulfate) for the remediation of oil hydrocarbon contamination. Fuel, 96, 270–276.  https://doi.org/10.1016/j.fuel.2012.01.017.CrossRefGoogle Scholar
  30. Vilardi, G., Palma, L. D., & Verdone, N. (2018a). On the critical use of zero valent iron nanoparticles and Fenton processes for the treatment of tannery wastewater. Journal of Water Process Engineering, 22, 109–122.  https://doi.org/10.1016/j.jwpe.2018.01.011.CrossRefGoogle Scholar
  31. Vilardi, G., Sebastiani, D., Miliziano, S., Verdone, N., & Palma, L. D. (2018b). Heterogeneous nZVI-induced Fenton oxidation process to enhance biodegradability of excavation by-products. Chemical Engineering Journal, 335, 309–320.  https://doi.org/10.1016/j.cej.2017.10.152.CrossRefGoogle Scholar
  32. WHO – World Heath Organization (2011) Guidelines for drinking-water quality. Vol. 1. 4th edn. GenevaGoogle Scholar
  33. Xie, Y. (2001). Analyzing haloacetic acids using gas chromatography/mass spectrometry. Water Research, 35(6), 1599–1602.  https://doi.org/10.1016/S0043-1354(00)00397-3.CrossRefGoogle Scholar
  34. Xue, X., Hanna, K., Despas, C., Wu, F., & Deng, N. (2009). Effect of chelating agent on the oxidation rate of PCP in the magnetite/H2O2system at neutral pH. Journal of Molecular Catalysis A: Chemical, 311(1–2), 29–35.  https://doi.org/10.1016/j.molcata.2009.06.016.CrossRefGoogle Scholar
  35. Zhang, L., Xu, L., Zeng, Q., Zhang, S., Xie, H., Liu, A., & Lu, W. (2012). Comparison of DNA damage in human-derived hepatoma line (HepG2) exposed to the fifteen drinking water disinfection byproducts using the single cell gel electrophoresis assay. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 741(1-2), 89–94.  https://doi.org/10.1016/j.mrgentox.2011.11.004.CrossRefGoogle Scholar
  36. Zhang, S. H., Mion, D., Tan, L., & Liu, A. (2016). Comparative cytotoxic and genotoxic potential of 13 drinking water disinfection br-products using a microplate-based cytotoxicity assay and a developed SOS/umu assay. Mutagenesis, 31(1), 35–41.  https://doi.org/10.1093/mutage/gev053.CrossRefGoogle Scholar
  37. Zingaretti, D., Lombardi, F., & Baciocchi, R. (2018). Soluble organic substances extracted from compost as amendments for Fenton-like oxidation of contaminated sites. Science of the Total Environment, 619–620, 1366–1374.  https://doi.org/10.1016/j.scitotenv.2017.11.178.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Amanda Oliveira Mourão
    • 1
  • Diego Francis Silva
    • 1
  • Mariandry Rodriguez
    • 1
  • Thamyris Souza Torres
    • 1
  • Elton Santos Franco
    • 1
  • Valter Lúcio Pádua
    • 2
  • Márcia Cristina da Silva Faria
    • 1
  • Luiz Fernando Oliveira Maia
    • 1
  • Jairo Lisboa Rodrigues
    • 1
    Email author
  1. 1.Instituto de Ciência, Engenharia e TecnologiaUniversidade Federal dos Vales do Jequitinhonha e MucuriTeófilo OtoniBrazil
  2. 2.Departamento de Engenharia Sanitária e AmbientalUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations