Advertisement

Technical approaches to evaluate the surfactant-enhanced biodegradation of biodiesel and vegetable oils

  • R. N. Montagnolli
  • J. M. Cruz
  • J. R. MoraesJr
  • C. R. Mendes
  • G. DilarriEmail author
  • P. R. M. Lopes
  • E. D. Bidoia
Article
  • 29 Downloads

Abstract

This research compared the effects of biosurfactant on the biodegradation of biodiesel and vegetable oils while validating two conceptually diverging methodologies. The two experimental setups were successfully modeled towards the effects of biosurfactants during biodegradation. We established the equivalence of both methodologies from the data output. As expected, the biosurfactants caused an increased oil uptake, thus increasing biodegradation performance. Cooking oils were favored by the microbial consortium as a carbon source when compared with biodiesel fuel, especially after use in food preparation. However, we found that biodiesel substrate standout with the highest biodegradation rates. Our results might indicate that a rapid metabolic change from the original compound initially favored biodiesels during the assimilation of organic carbon for a set specialized microbial inoculum. The data output was successfully combined with mathematical models and statistical tools to describe and predict the actual environmental behavior of biodiesel and vegetable oils. The models confirmed and predicted the biodegradation effectiveness with biosurfactants and estimated the required timeframe to achieve satisfactory contaminant removal.

Keywords

Biodegradation kinetics Bioremediation Colorimetric Individual moving range chart Mathematical modeling Respirometric 

Notes

Funding information

Our research group gratefully acknowledges funding from the PRH-ANP/MCT (Programa de Formação de Recursos Humanos em Geologia do Petróleo e Ciências Ambientais Aplicadas ao Setor de Petróleo e Gás), grant number 6000.0067867.11.4; and the support from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FUNDUNESP (Fundação para o Desenvolvimento da UNESP), and UNESP (Universidade Estadual Paulista “Julio de Mesquita Filho”).

Supplementary material

10661_2019_7635_MOESM1_ESM.pptx (504 kb)
ESM 1 (PPTX 504 kb)

References

  1. Aluyor, E. O., Obahiagbon, K. O., & Ori-Jesu, M. (2009). Biodegradation of vegetable oils: a review. Scientific Research and Essays, 4, 543–548.Google Scholar
  2. Amund, O. O., & Adebiyi, A. G. (1991). Effect of viscosity on the biodegradability of automotive lubricating oils. Tribology International, 24, 235–237.CrossRefGoogle Scholar
  3. Bartha, R., & Pramer, D. (1965). Features of flask and method for measurement of the persistence and biological effects of pesticides in soil. Soil Science, 68, 100–104.Google Scholar
  4. Behrends, V., Ebbels, T. M. D., Williams, H. D., & Bundy, J. G. (2009). Time-resolved metabolic footprinting for nonlinear modeling of bacterial substrate utilization. Applied and Environmental Microbiology, 75, 2453–2463.CrossRefGoogle Scholar
  5. Bertrand, J. C., Bonin, P., Goutx, M., Gauthier, M., & Mille, G. (1994). The potential application of biosurfactants in combating hydrocarbon pollution in marine environment. Research in Microbiology, 145, 53–56.CrossRefGoogle Scholar
  6. Borden, R. C., & Bedient, P. B. (1986). Transport of dissolved hydrocarbons influenced by oxygen-limited biodegradation. Water Resources Research, 22, 1973–1982.CrossRefGoogle Scholar
  7. Bustamante, M., Durán, N., & Diez, M. C. (2012). Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. Journal of Soil Science and Plant Nutrition, 12, 667–687.Google Scholar
  8. Calvo, C., Manzanera, M., Silva-Castro, G. A., Uad, I., & González-López, J. (2008). Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Science of the Total Environment, 407, 3634–3640.CrossRefGoogle Scholar
  9. Chen, H., & Juang, R. (2008). Recovery and separation of surfactin from pretreated fermentation broths by physical and chemical extraction. Biochemical Engineering Journal, 28, 39–46.CrossRefGoogle Scholar
  10. Chhatre, S., Purohit, H., Shanker, R., & Khanna, P. (1996). Bacterial consortia for crude oil spill remediation. Water Science and Technology, 34, 187–194.CrossRefGoogle Scholar
  11. Colla, T. S., Andreazza, R., Bücker, F., Souza, M. M., Tramontini, L., Prado, G. R., Frazzon, A. P. G., Camargo, F. A. O., & Bento, F. M. (2014). Bioremediation assessment of diesel–biodiesel-contaminated soil using an alternative bioaugmentation strategy. Environemental Science and Pollution Research, 21, 2592–2602.CrossRefGoogle Scholar
  12. Das, K., & Mukherjee, A. K. (2007). Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresource Technology, 98, 1339–1345.CrossRefGoogle Scholar
  13. Das, P., Mukherjee, A. K., & Sen, R. (2008). Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere, 72, 1229–1234.CrossRefGoogle Scholar
  14. Dehghan-Noudeh, G., Housaindokht, M., & Bazzaz, B. S. F. (2005). Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. Journal of Microbiology, 43, 272–276.Google Scholar
  15. DeMello, J. A., Carmichael, C. A., Peacock, E. E., Nelson, R. K., Arey, J. S., & Reddy, C. M. (2007). Biodegradation and environmental behavior of biodiesel mixtures in the sea: an initial study. Marine Pollution Bulletin, 54, 894–904.CrossRefGoogle Scholar
  16. Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61, 47–64.Google Scholar
  17. Fennema, O. R. (1985). Food Chemistry. New York: Marcel Dekker Inc..Google Scholar
  18. Georgiou, G., Lin, S., & Sharma, M. M. (1992). Surface active compounds from microorganisms. Biotechnology Advances, 10, 60–65.Google Scholar
  19. Geris, R., Santos, N.A.C., Amaral, B.A., Maia, I.S., Castro, V.D., Carvalho, J.R.M. (2007). Biodiesel from soybean oil-experimental procedure of transesterification for organic chemistry laboratories. Quím. Nova, 30, 1369–1373.CrossRefGoogle Scholar
  20. Gong, G., Zheng, Z., Chen, H., Yuan, C., Wang, P., Yao, L., & Yu, Z. (2009). Enhanced production of surfactin by Bacillus subtilis e8 mutant obtained by ion beam implantation. Food Technology and Biotechnology, 47, 23–31.Google Scholar
  21. Graves, A., Lang, C., & Leavitt, M. (1991). Respirometric analysis of the biodegradation of organic contaminants in soil and water. Applied Biochemistry and Biotechnology, 28, 813–826.CrossRefGoogle Scholar
  22. Kornmüller, A., & Wiesmann, U. (1999). Continuous ozonation ofpolycyclic aromatic hydrocarbons in oil/water-emulsions and biodegradation of oxidation products. Water Science and Technology, 40, 107–114.CrossRefGoogle Scholar
  23. Kosaric, N. (2001). Biosurfactants and their application for soil bioremediation. Food Technology and Biotechnology, 39, 295–304.Google Scholar
  24. Lopes, P. R. M., & Bidoia, E. D. (2009). Evaluation of the biodegradation of different types of lubricant oil in liquid medium. Brazilian Archives of Biology and Technology, 52, 1285–1290.CrossRefGoogle Scholar
  25. Makareviciene, V., & Janulis, P. (2003). Environmental effect of rapeseed oil ethyl ester. Renewable Energy, 28, 2395–2403.CrossRefGoogle Scholar
  26. Mattson, R. V., Arthur, J. W., & Walbridge, C. T. (1976). Acute toxicity of selected organic compounds to fathead. USA: Environmental Research Lab – EPA.Google Scholar
  27. Millioli, V. S., & Sobral, E. F. (2007). Biorremediação de solo contaminado com óleo cru: avaliação da adição de ramnolipídio quanto à toxicidade e a eficiência de biodegradação. Campinas: PDPETRO.Google Scholar
  28. Moliterni, E., Jiménez-Tusset, R. G., Rayo, M. V., Rodriguez, L., Fernández, F. J., & Villaseñor, J. (2012). Kinetics of biodegradation of diesel fuel by enriched microbial consortia from polluted soils. International journal of Environmental Science and Technology, 9, 749–758.CrossRefGoogle Scholar
  29. Montagnolli, R. N., Lopes, P. R. M., & Bidoia, E. D. (2009). Applied models to biodegradation kinetics of lubricant and vegetable oils in wastewater. International Biodeterioration & Biodegradation, 63, 297–305.CrossRefGoogle Scholar
  30. Montagnolli, R. N., Lopes, P. R. M., & Bidoia, E. D. (2014). Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products. Environmental Monitoring and Assessment, 187, 4116–4121.CrossRefGoogle Scholar
  31. Montagnolli, R. N., Lopes, P. R. M., & Bidoia, E. D. (2015). Screening the toxicity and biodegradability of petroleum hydrocarbons by a rapid colorimetric method. Archives of Environmental Contamination and Toxicology, 68, 342–353.CrossRefGoogle Scholar
  32. Mulligan, C. (2005). Environmental applications for biosurfactants. Environmental Pollution, 133, 183–198.CrossRefGoogle Scholar
  33. Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2010). Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology, 60, 371–380.CrossRefGoogle Scholar
  34. Nitschke, M., Ferraz, C., & Pastore, G. M. (2004). Selection of microorganisms for biosurfactant production using agroindustrial wastes. Brazilian Journal of Microbiology, 35, 81–85.CrossRefGoogle Scholar
  35. Norman, R. S., Frontera-Suau, R., & Morris, P. J. (2002). Variability in Pseudomonas aeruginosa lipopolysaccharide expression during crude oil degradation. Applied and Environmental Microbiology, 68, 5096–5103.CrossRefGoogle Scholar
  36. Pala, D. M., Carvalho, D. D., Pinto, J. C., & Sant’anna, G. L. (2006). A suitable model to describe bioremediation of a petroleum-contaminated soil. International Biodeterioration & Biodegradation, 58, 254–260.CrossRefGoogle Scholar
  37. Pasco, N., Baronian, K. H., Jeffries, C., & Hay, J. (2000). Biochemical mediator demand—a novel rapid alternative for measuring biochemical oxygen demand. Journal of Microbiology and Biotechnology, 53, 613–618.CrossRefGoogle Scholar
  38. Penet, S., Marchal, R., Sghir, A., & Monot, F. (2004). Biodegradation of hydrocarbon cuts used for diesel oil formulation. Applied Microbiology and Biotechnology, 66, 40–47.CrossRefGoogle Scholar
  39. Pinto, A.C., Guarieiro, L.L.N., Rezende, M.J.C., Ribeiro, N.M., Torres, E.A., Lopes, W.A., Pereira, P.A.P., Andrade, J.B. (2005). Biodiesel: an overview. Journal of the Brazilian Chemical Society, 16, 1313–1330.CrossRefGoogle Scholar
  40. Queiroga, C. L., Nascimento, L. R., & Serra, G. E. (2003). Evaulation of paraffins biodegradation and biosurfactant production by Bacillus subtilis in the presence of crude oil. Brazilian Journal of Microbiology, 34, 321–324.CrossRefGoogle Scholar
  41. Rico, J. A. P., & Sauer, I. L. (2015). A review of Brazilian biodiesel experiences. Renewable and Sustainable Energy Reviews, 45, 513–529.CrossRefGoogle Scholar
  42. Schmidt, S. K., Simkins, S., & Alexander, M. (1985). Models for the kinetics of biodegradation of organic compounds not supporting growth. Applied and Environmental Microbiology, 50, 323–331.Google Scholar
  43. Scrimgeour, C. (2005). Bailey’s industrial oil and fat products. New Jersey: Wiley.Google Scholar
  44. Singh, A., Olsen, S. I., & Nigam, P. S. (2011). A viable technology to generate third-generation biofuel. Journal of Chemical Technology and Biotechnology, 86, 1349–1353.CrossRefGoogle Scholar
  45. Srinivasan, P., & Mercer, J. W. (1988). Simulation of biodegradation and sorption processes in ground-water. Ground Water, 26, 475–487.CrossRefGoogle Scholar
  46. Sutton, N. B., Gaans, P. V., Langenhoff, A. A. M., Maphosa, F., Smidt, H., Grotenhuis, T., & Rijnaarts, H. H. M. (2013). Biodegradation of aged diesel in diverse soil matrixes: impact of environmental conditions and bioavailability on microbial remediation capacity. Biodegradation, 24, 487–498.CrossRefGoogle Scholar
  47. Taylor, L. T., & Jones, D. M. (2001). Bioremediation of coal tar PAH in soils using biodiesel. Chemosphere, 44, 1131–1136.CrossRefGoogle Scholar
  48. Venkateswaran, K., & Harayama, S. (1995). Sequential enrichment of microbial populations exhibiting enhanced biodegradation of crude oil. Canadian Journal of Microbiology, 41, 767–775.CrossRefGoogle Scholar
  49. Wake, H. (2005). Oil refineries: a review of their ecological impacts on the aquatic environment. Estuarine, Coastal and Shelf Science, 62, 131–140.CrossRefGoogle Scholar
  50. Wilkinson, S., Klar, J., & Applegarth, S. P. (2006). Optimizing biofuel cell performance using a targeted mixed mediator combination. Electroanal, 18, 2001–2007.CrossRefGoogle Scholar
  51. Yoshida, N., Hoashi, J., Morita, T., McNiven, S. J., Nakamura, H., & Karube, I. (2001). Improvement of a mediator-type biochemical oxygen demand sensor for on-site measurement. Journal of Biotechnology, 88, 269–275.CrossRefGoogle Scholar
  52. Zhengkai, L., & Wrenn, B. A. (2008). Effects of ferric hydroxide on the anaerobic biodegradation kinetics and toxicity of vegetable oil in freshwater sediments. Water Research, 38, 3859–3868.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biochemistry and MicrobiologySão Paulo State University (UNESP)Rio ClaroBrazil

Personalised recommendations