Advertisement

Cadmium induces GAPDH- and- MDH mediated delayed cell aging and dysfunction in Candida tropicalis 3Aer

  • Zaman Khan
  • Muhammad Atif Nisar
  • Saima Muzammil
  • Saima Zafar
  • Inga Zerr
  • Abdul RehmanEmail author
Article
  • 35 Downloads

Abstract

Eukaryotes employ various mechanisms to survive environmental stress conditions. Multicellular organisms eliminate permanently damaged cells by apoptosis, while unicellular eukaryotes like yeast react by decelerating cell aging. In the present study, transcriptomic and proteomic approaches were employed to elucidate the underlying mechanism of delayed apoptosis. Our findings suggest that Candida tropicalis 3Aer has a set of tightly controlled genes that are activated under Cd+2 exposition. Acute exposure to Cd+2 halts the cell cycle at the G2/M phase checkpoint and activates multiple cytoplasmic proteins that overcome effects of Cd+2-induced reactive oxygen species. Prolonged Cd+2 stress damages DNA and initiates GAPDH amyloid formation. This is the first report that Cd+2 challenge initiates dynamic redistribution of GAPDH and MDH and alters various metabolic pathways including the pentose phosphate pathway. In conclusion, the intracellular redistribution of GAPDH and MDH induced by prolonged cadmium stress modulates various cellular reactions, which facilitate delayed aging in the yeast cell.

Key words

Cd+2 stress Candida tropicalis 3Aer Non-protein thiols Cell cycle Apoptosis 

Notes

Acknowledgement

The authors express their gratitude to the Pakistan Science Foundation (PSF), Islamabad-Pakistan for support the present research work under project No. PSF/Res/ Envr (97).

References

  1. Arshad, M. N., Nisar, M. A., Khurshid, M., Hussain, S. Z., Maqsood, U., Asghar, M. T., & Nazir, J. (2015). Molecular basis of arsenite (As+3)-induced acute cytotoxicity in human cervical epithelial carcinoma cells. Libyan Journal of Medicine, 10, 2015.CrossRefGoogle Scholar
  2. Bączek-Kwinta, R., Antonkiewicz, J., Łopata-Stasiak, A., Kępka, W., & A. (2019). Smoke compounds aggravate stress inflicted on Brassica seedlings by unfavourable soil conditions. Photosynthetica, 57, 1–8.CrossRefGoogle Scholar
  3. Breitkreutz, A., Choi, H., Sharom, J. R., Boucher, L., Neduva, V., Larsen, B., Lin, Z. Y., Breitkreutz, B. J., Stark, C., Liu, G., Ahn, J., Dewar-Darch, D., Reguly, T., Tang, X., Almeida, R., Qin, Z. S., Pawson, T., Gingras, A. C., Nesvizhskii, A. I., & Tyers, M. (2010). A global protein kinase and phosphatase interaction network in yeast. Science, 328, 1043–1046.CrossRefGoogle Scholar
  4. Chemek, M., Boughammoura, S., Mimouna, S. B., Chouchene, L., Banni, M., & Messaoudi, I. (2015). Changes of the mRNA expression pattern of Zn transporters: a probable mechanism for cadmium retention and zinc redistribution in the suckling rat tissues. Biological Trace Element Research, 165, 173–182.CrossRefGoogle Scholar
  5. Clark-Adams, C. D., Norris, D., Osley, M. A., Fassler, J. S., & Winston, F. (1988). Changes in histone gene dosage alter transcription in yeast. Genes and Development, 2, 150–159.CrossRefGoogle Scholar
  6. Cuddihy, A. R., & O'connell, M. J. (2003). Cell-cycle responses to DNA damage in G2. International Review of Cytology, 222, 99–140.CrossRefGoogle Scholar
  7. Discola, K. F., De Oliveira, M. A., Cussiol, J. R. R., Monteiro, G., Bárcena, J. A., Porras, P., Padilla, C. A., Guimarães, B. G., & Netto, L. E. (2009). Structural aspects of the distinct biochemical properties of glutaredoxin 1 and glutaredoxin 2 from Saccharomyces cerevisiae. Journal of Molecular Biology, 385, 889–901.CrossRefGoogle Scholar
  8. Draculic, T., Dawes, I. W., & Grant, C. M. (2000). A single glutaredoxin or thioredoxin gene is essential for viability in the yeast Saccharomyces cerevisiae. Molecular Microbiology, 36, 1167–1174.CrossRefGoogle Scholar
  9. Elahi, A., & Rehman, A. (2019). Comparative behavior of two gram positive Cr6+ resistant bacterial strains Bacillus aerius S1 and Brevibacterium iodinum S2 under hexavalent chromium stress. Biotechnology Reports, 21, e00307.CrossRefGoogle Scholar
  10. Fabrizio, P., Pletcher, S., Minois, N., Vaupel, J., & Longo, V. (2004). Chronological aging independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Letters, 557, 136–142.CrossRefGoogle Scholar
  11. Falcone, C., & Mazzoni, C. (2016). External and internal triggers of cell death in yeast. Cellular and Molecular Life Sciences, 73, 2237–2250.CrossRefGoogle Scholar
  12. Galibert, F., Alexandraki, D., Baur, A., Boles, E., Chalwatzis, N., Chuat, J. C., Coster, F., Cziepluch, C., De Haan, M., Domdey, H., Durand, P., Entian, K. D., Gatius, M., Goffeau, A., Grivell, L. A., Hennemann, A., Herbert, C. J., Heumann, K., Hilger, F., Hollenberg, C. P., Huang, M. E., Jacq, C., Jauniaux, J. C., Katsoulou, C., & Karpfinger-Hartl, L. (1996). Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X. EMBO Journal, 15, 2031–2049.CrossRefGoogle Scholar
  13. Gasch, A. P. (2003). The environmental stress response: a common yeast response to diverse environmental stresses. In: Yeast stress responses, (Eds). Springer 11–70.Google Scholar
  14. Gibson, B. R., Lawrence, S. J., Leclaire, J. P., Powell, C. D., & Smart, K. A. (2007). Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiological Review, 31, 535–569.CrossRefGoogle Scholar
  15. Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J. D., Jacq, C., Johnston, M., Louis, E. J., Mewes, H. W., Murakami, Y., Philippsen, P., Tettelin, H., & Oliver, S. G. (1996). Life with 6000 genes. Science, 274, 563–547.CrossRefGoogle Scholar
  16. Gomes, D., Riger, C., Pinto, M., Panek, A., & Eleutherio, E. (2005). Evaluation of the role of Ace1 and Yap1 in cadmium absorption using the eukaryotic cell model Saccharomyces cerevisiae. Environmental Toxicology and Pharmacology, 20, 383–389.CrossRefGoogle Scholar
  17. Gourlay, C. W., & Ayscough, K. R. (2005). Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. Journal of Cell Science, 118, 2119–2132.CrossRefGoogle Scholar
  18. Grant, C. M., Luikenhuis, S., Beckhouse, A., Soderbergh, M., & Dawes, I. W. (2000). Differential regulation of glutaredoxin gene expression in response to stress conditions in the yeast Saccharomyces cerevisiae. BBA-Gene Structure and Expression, 1490, 33–42.CrossRefGoogle Scholar
  19. Herker, E., Jungwirth, H., Lehmann, K. A., Maldener, C., Fröhlich, K. U., Wissing, S., Büttner, S., Fehr, M., Sigrist, S., & Madeo, F. (2004). Chronological aging leads to apoptosis in yeast. Journal of Cell Biology, 164, 501–507.CrossRefGoogle Scholar
  20. Hill, S. M., & Nystrom, T. (2015). The dual role of a yeast metacaspase: What doesn't kill you makes you stronger. BioEssays, 37, 525–531.CrossRefGoogle Scholar
  21. Hill, S. M., Hao, X., Liu, B., & Nyström, T. (2014). Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae. Science, 344, 1389–1392.CrossRefGoogle Scholar
  22. Ilyas, S., & Rehman, A. (2018). Metal resistance and uptake by Trichosporon asahii and Pichia kudriavzevii isolated from industrial effluents. Archives of Environmental Protection, 44, 77–84.Google Scholar
  23. Jiang, X., Sun, Q., Li, H., Li, K., & Ren, X. (2014). The role of phosphoglycerate mutase 1 in tumor aerobic glycolysis and its potential therapeutic implications. International Journal of Cancer, 135, 1991–1996.CrossRefGoogle Scholar
  24. Jin, Y. H., Clark, A. B., Slebos, R. J., Al-Refai, H., Taylor, J. A., Kunkel, T. A., Resnick, M. A., & Gordenin, D. A. (2003). Cadmium is a mutagen that acts by inhibiting mismatch repair. Nature Genetics, 34, 326–329.CrossRefGoogle Scholar
  25. Khan, Z., Hussain, S. Z., Rehman, A., Zulfiqar, S., & Shakoori, A. (2015a). Evaluation of cadmium resistant bacterium, Klebsiella pneumoniae, isolated from industrial wastewater for its potential use to bioremediate environmental cadmium. Pakistan Journal of Zoology, 47, 1533–1543.Google Scholar
  26. Khan, Z., Nisar, M. A., Hussain, S. Z., Arshad, M. N., & Rehman, A. (2015b). Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium. Applied Microbiology and Biotechnology, 99, 10745–10757.CrossRefGoogle Scholar
  27. Khan, Z., Rehman, A., Nisar, M. A., Zafar, S., Hussain, S. Z., Zerr, I., Hussain, I., Waseem, M., & Arif, M. (2017a). Molecular basis of Cd(+2) stress response in Candida tropicalis. Applied Microbiology and Biotechnology, 101, 7715–7728.CrossRefGoogle Scholar
  28. Khan, Z., Rehman, A., Nisar, M. A., Zafar, S., & Zerr, I. (2017b). Biosorption behavior and proteomic analysis of Escherichia coli P4 under cadmium stress. Chemosphere, 174, 136–147.CrossRefGoogle Scholar
  29. Kim, S., Cheon, H.-S., Kim, S.-Y., Juhnn, Y.-S., & Kim, Y.-Y. (2013). Cadmium induces neuronal cell death through reactive oxygen species activated by GADD153. BMC Cell Biology, 14, 4.CrossRefGoogle Scholar
  30. Kuang, X., Fang, Z., Wang, S., Shi, P., & Huang, Z. (2015). Effects of cadmium on intracellular cation homoeostasis in the yeast Saccharomyces cerevisiae. Toxicology and Environmental Chemistry, 97, 922–930.CrossRefGoogle Scholar
  31. Lee, S. M., Kim, J. H., Cho, E. J., & Youn, H. D. (2009). A nucleocytoplasmic malate dehydrogenase regulates p53 transcriptional activity in response to metabolic stress. Cell Death and Differentiation, 16, 738–748.CrossRefGoogle Scholar
  32. Li, Z., & Yuan, H. (2006). Characterization of cadmium removal by Rhodotorula sp. Y11. Applied Microbiology and Biotechnology, 73, 458–463.CrossRefGoogle Scholar
  33. Longo, V.D., Ellerby, L.M., Bredesen, D.E., Valentine, J.S., & Gralla,, E.B. (1997) Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast. Journal of Cell Biology, 137, 1581-1588.Google Scholar
  34. Madeo, F., Herker, E., Maldener, C., Wissing, S., Lächelt, S., Herlan, M., Fehr, M., Lauber, K., Sigrist, S. J., Wesselborg, S., & Fröhlich, K. U. (2002). A caspase-related protease regulates apoptosis in yeast. Molecular Cell, 9, 911–917.CrossRefGoogle Scholar
  35. Madeo, F., Herker, E., Wissing, S., Jungwirth, H., Eisenberg, T., & Fröhlich, K.-U. (2004). Apoptosis in yeast. Current Opinion in Microbiology, 7, 655–660.CrossRefGoogle Scholar
  36. Mandal, D., Bolander, M. E., Mukhopadhyay, D., Sarkar, G., & Mukherjee, P. (2006). The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology, 69, 485–492.CrossRefGoogle Scholar
  37. Meeks-Wagner, D., & Hartwell, L. H. (1986). Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell, 44, 43–52.CrossRefGoogle Scholar
  38. Meunier, B., De Visser, S. P., & Shaik, S. (2004). Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chemical Reviews, 104, 3947–3980.CrossRefGoogle Scholar
  39. O'brien, T., Mandel, H. G., Pritchard, D. E., & Patierno, S. R. (2002). Critical role of chromium (Cr)-DNA interactions in the formation of Cr-induced polymerase arresting lesions. Biochemistry, 41, 12529–12537.CrossRefGoogle Scholar
  40. Pai, H. V., Starke, D. W., Lesnefsky, E. J., Hoppel, C. L., & Mieyal, J. J. (2007). What is the functional significance of the unique location of glutaredoxin 1 (GRx1) in the intermembrane space of mitochondria? Antioxidants and Redox Signaling, 9, 2027–2034.CrossRefGoogle Scholar
  41. Peeters, K., Van Leemputte, F., Fischer, B., Bonini, B. M., Quezada, H., Tsytlonok, M., Haesen, D., Vanthienen, W., Bernardes, N., Gonzalez-Blas, C. B., Janssens, V., Tompa, P., Versées, W., & Thevelein, J. M. (2017). Fructose-1,6-bisphosphate couples glycolytic flux to activation of Ras. Nature Communications, 8, 922.CrossRefGoogle Scholar
  42. Pozniakovsky, A. I., Knorre, D. A., Markova, O. V., Hyman, A. A., Skulachev, V. P., & Severin, F. F. (2005). Role of mitochondria in the pheromone-and amiodarone-induced programmed death of yeast. Journal of Cell Biology, 168, 257–269.CrossRefGoogle Scholar
  43. Prado, F., & Aguilera, A. (2005). Partial depletion of histone H4 increases homologous recombination-mediated genetic instability. Molecular and Cellular Biology, 25, 1526–1536.CrossRefGoogle Scholar
  44. Ramljak, S., Asif, A. R., Armstrong, V. W., Wrede, A., Groschup, M. H., Buschmann, A., Schulz-Schaeffer, W., Bodemer, W., & Zerr, I. (2008). Physiological role of the cellular prion protein (PrPc): protein profiling study in two cell culture systems. J Proteome Res, 7, 2681–2695.CrossRefGoogle Scholar
  45. Rani, A., Kumar, A., Lal, A., & Pant, M. (2014). Cellular mechanisms of cadmium-induced toxicity: a review. International Journal of Environmental Health Research, 24, 378–399.CrossRefGoogle Scholar
  46. Rehman, A., & Anjum, M. S. (2011). Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: glutathione as detoxifying agent. Environmental Monitoring and Assessment, 174, 585–595.CrossRefGoogle Scholar
  47. Sastry, M., Ahmad, A., Khan, M. I., & Kumar, R. (2003). Biosynthesis of metal nanoparticles using fungi and actinomycete. Current Science, 85, 162–170.Google Scholar
  48. Saunders, P. A., Chen, R. W., & Chuang, D. M. (1999). Nuclear translocation of glyceraldehyde 3 phosphate dehydrogenase isoforms during neuronal apoptosis. Journal of Neurochemistry, 72, 925–932.CrossRefGoogle Scholar
  49. Silva, A., Almeida, B., Sampaio-Marques, B., Reis, M. I., Ohlmeier, S., Rodrigues, F., Vale, A., & Ludovico, P. (2011). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a specific substrate of yeast metacaspase. Biochimica et Biophysica Acta, 1813, 2044–2049.CrossRefGoogle Scholar
  50. Walter, D., Wissing, S., Madeo, F., & Fahrenkrog, B. (2006). The inhibitor-of-apoptosis protein Bir1p protects against apoptosis in S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2. Journal Cell Science, 119, 1843–1851.CrossRefGoogle Scholar
  51. Wang, Y., Fang, J., Leonard, S. S., & Rao, K. M. (2004). Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radical Biology and Medicine, 36, 1434–1443.CrossRefGoogle Scholar
  52. Zheng, L., Roeder, R. G., & Luo, Y. (2003). S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell, 114, 255–266.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zaman Khan
    • 1
  • Muhammad Atif Nisar
    • 2
  • Saima Muzammil
    • 2
  • Saima Zafar
    • 3
  • Inga Zerr
    • 3
  • Abdul Rehman
    • 4
    Email author
  1. 1.University Institute of Medical Laboratory Technology (UIMLT), Faculty of Allied Health Sciences (FAHS)The University of LahoreLahorePakistan
  2. 2.Department of MicrobiologyGovernment College University Faisalabad (GCUF)FaisalabadPakistan
  3. 3.Department of Neurology, Clinical Dementia Center and DZNE, Georg-August UniversityUniversity Medical Center Göttingen (UMG)GöttingenGermany
  4. 4.Department of Microbiology and Molecular Genetics (MMG)University of the PunjabLahorePakistan

Personalised recommendations