Advertisement

The determination of some stand parameters using SfM-based spatial 3D point cloud in forestry studies: an analysis of data production in pure coniferous young forest stands

  • Sercan GülciEmail author
Article

Abstract

Benefiting from current unmanned air vehicle (UAV) and remote sensing techniques, the present study aims to estimate tree count (TC), tree height (TH), and tree crown cover area (TCCA) in a young Calabrian pine stand via canopy height model (CHM). Overlay images obtained using Quadcopter were used to generate two spatial three-dimensional (3D) cloud points in two different qualities. Point clouds were processed using R program in order to produce tree data using CHM. The sensitivity of CHM-based tree data was revealed using 318 tree measurements in 32 different sampling units. Estimation and measurement values were classified based on their structure from motion (SfM) quality and cover classes, and the statistical relationships among them were analyzed. Without any classification, R2 was calculated for TC, THMean, and TCCATotal estimations and field measurements. R2 values were calculated as 0.865, 0.778, and 0.869, respectively, for SfMHighest CHM, while they were calculated as 0.863, 0.736, and 0.843, respectively, for SfMMedium CHM. In addition, sensitivity and performance ranking in different groups were determined based on root mean square error (RMSE) and mean absolute percentage error (MAPE) values. A significant difference was observed among groups in terms of quality and cover for TH, while no significant differences were observed for TCCA. Therefore, it is possible to estimate the properties of SfM CHM–based young coniferous stand. It was understood that tree density, crown shape, and branching influenced the accuracy of the present study. The developed UAV (Drone)-SfM is a promising technique for further small-scale forestry studies.

Keywords

Measurement and evaluation Precision forestry UAV Spatial 3D point cloud CHM Local maxima 

Notes

Acknowledgments

The author thanks Seçkin Şireli (Forest Engineer) for his help in field work.

Compliance with ethical standards

Conflict of interest

The author declares that there are no conflicts of interest.

References

  1. Agisoft LLC. (2016). Agisoft PhotoScan user manual : Professional Edition, Version 1.3. User Manuals.Google Scholar
  2. Akay, A. E., Oǧuz, H., Karas, I. R., & Aruga, K. (2009). Using LiDAR technology in forestry activities. Environmental Monitoring and Assessment., 151, 117–125.  https://doi.org/10.1007/s10661-008-0254-1.CrossRefGoogle Scholar
  3. Akgül, M., Yurtseven, H., Demir, M., Akay, A. E., Gülci, S., & Öztürk, T. (2016). İnsansız hava araçları ile yüksek hassasiyette sayısal yükseklik modeli üretimi ve ormancılıkta kullanım olanakları. İstanbul Üniversitesi Orman Fakültesi Dergisi.  https://doi.org/10.17099/jffiu.23976 [Turkish].
  4. Akgul, M., Yurtseven, H., Gulci, S., & Akay, A. E. (2018). Evaluation of UAV- and GNSS-based DEMs for earthwork volume. Arabian Journal for Science and Engineering, 43(4), 1893–1909.  https://doi.org/10.1007/s13369-017-2811-9.CrossRefGoogle Scholar
  5. Anderson, K., & Gaston, K. J. (2013). Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment., 11, 138–146.  https://doi.org/10.1890/120150.CrossRefGoogle Scholar
  6. Baltsavias, E., Gruen, A., Eisenbeiss, H., Zhang, L., & Waser, L. T. (2008). High-quality image matching and automated generation of 3D tree models. International Journal of Remote Sensing., 29, 1243–1259.  https://doi.org/10.1080/01431160701736513.CrossRefGoogle Scholar
  7. Becker, R. M., Keefe, R. F., Anderson, N. M., & Eitel, J. U. H. (2018). Use of lidar-derived landscape parameters to characterize alternative harvest system options in the Inland Northwest. International Journal of Forest Engineering., 29, 179–191.  https://doi.org/10.1080/14942119.2018.1497255.CrossRefGoogle Scholar
  8. Birdal, A. C., Avdan, U., & Türk, T. (2017). Estimating tree heights with images from an unmanned aerial vehicle. Geomatics, Natural Hazards and Risk., 8, 1144–1156.  https://doi.org/10.1080/19475705.2017.1300608.CrossRefGoogle Scholar
  9. Buğday, E. (2018). Capabilities of using UAVs in forest road construction activities. European Journal of Forest Engineering, 4(2), 56–62.CrossRefGoogle Scholar
  10. Clark, M. L., Clark, D. B., & Roberts, D. A. (2004). Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sensing of Environment., 91, 68–89.  https://doi.org/10.1016/j.rse.2004.02.008.CrossRefGoogle Scholar
  11. Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing., 92, 79–97.  https://doi.org/10.1016/j.isprsjprs.2014.02.013.CrossRefGoogle Scholar
  12. Dandois, J. P., & Ellis, E. C. (2013). High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sensing of Environment., 136, 259–276.  https://doi.org/10.1016/j.rse.2013.04.005.CrossRefGoogle Scholar
  13. Dandois, J. P., Olano, M., & Ellis, E. C. (2015). Optimal altitude, overlap, and weather conditions for computer vision UAV estimates of forest structure. Remote Sensing., 7, 13895–13920.  https://doi.org/10.3390/rs71013895.CrossRefGoogle Scholar
  14. DJI. (2016). Phantom 4 specs. Online Webpage. https://www.dji.com/phantom-4/info. Accessed 10 Jan 2019.
  15. DJI. (2018). Phantom 4 RTK user manual. https://www.dji.com/phantom-4-rtk/info. Accessed 08 Mar 2019.
  16. Fritz, A., Kattenborn, T., & Koch, B. (2013). UAV-based photogrammetric point clouds—tree stem mapping in open stands in comparison to terrestrial laser scanner point clouds. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences., XL-1/W2, 141–146.  https://doi.org/10.5194/isprsarchives-XL-1-W2-141-2013.CrossRefGoogle Scholar
  17. Gong, P., Sheng, Y., & Blging, G. S. (2002). 3D model-based tree measurement from high-resolution aerial imagery. Photogrammtric Engineering & Remote Sensing., 68(11), 1203–1212.Google Scholar
  18. Goodbody, T. R. H., Coops, N. C., Marshall, P. L., Tompalski, P., & Crawford, P. (2017). Unmanned aerial systems for precision forest inventory purposes: a review and case study. Forestry Chronicle., 93, 71–81.  https://doi.org/10.5558/tfc2017-012.CrossRefGoogle Scholar
  19. Grenzdörffer, G., Engel, A., & Teichert, B. (2008). The photogrammetric potential of low-cost UAVs in forestry and agriculture. In International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences Vol. XXXVII. Part B1.  https://doi.org/10.2747/1548-1603.41.4.287.CrossRefGoogle Scholar
  20. Guerra-Hernández, J., González-Ferreiro, E., Sarmento, A., Silva, J., Nunes, A., Correia, A. C., et al. (2016). Using high resolution UAV imagery to estimate tree variables in Pinus pinea plantation in Portugal. Forest Systems., 25.  https://doi.org/10.5424/fs/2016252-08895.CrossRefGoogle Scholar
  21. Gülci, S., Akgül, M., Akay, A. E., & Taş, I. (2017). Using ready-to-use drone images in forestry activities: case study of Çinarpinar in Kahramanmaras, Turkey. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives (Vol. 42, pp. 51–53).  https://doi.org/10.5194/isprs-archives-XLII-4-W6-51-2017.CrossRefGoogle Scholar
  22. IBM. (2012). IBM SPSS Advanced Statistics 22. IBM., 22, 419–430.  https://doi.org/10.1080/02331889108802322.CrossRefGoogle Scholar
  23. Kraus, K., & Pfeifer, N. (1998). Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing., 53, 193–203.  https://doi.org/10.1016/S0924-2716(98)00009-4.CrossRefGoogle Scholar
  24. Lie, H. L. (2016). Assessing accuracy of using unmanned aerial system in forest inventory. Ås: Norwegian University of Life Sciences.Google Scholar
  25. Matese, A., Toscano, P., Di Gennaro, S. F., Genesio, L., Vaccari, F. P., Primicerio, J., et al. (2015). Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sensing., 7, 2971–2990.  https://doi.org/10.3390/rs70302971.CrossRefGoogle Scholar
  26. McGaughey, R. J. (2018). FUSION/LDV: software for LIDAR data analysis and visualization. FUSION Version 3.80 (Vol. 123(2)). Seattle: United States Department of Agriculture Forest Service. Pacific Northwest Research Station.Google Scholar
  27. Micheletti, N., Chandler, J. H., & Lane, S. N. (2015). Structure from motion (SFM) photogrammetry. In Clarke, L. E. & Nield, J. M. (Eds.) Geomorphological Techniques (Online Edition).  https://doi.org/10.5194/isprsarchives-XL-5-W4-37-2015.CrossRefGoogle Scholar
  28. Mlambo, R., Woodhouse, I. H., Gerard, F., & Anderson, K. (2017). Structure from motion (SfM) photogrammetry with drone data: a low cost method for monitoring greenhouse gas emissions from forests in developing countries. Forests., 8.  https://doi.org/10.3390/f8030068.CrossRefGoogle Scholar
  29. Mohan, M., Silva, C. A., Klauberg, C., Jat, P., Catts, G., Cardil, A., et al. (2017). Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest. Forests., 8.  https://doi.org/10.3390/f8090340.CrossRefGoogle Scholar
  30. Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied Geomatics, 6(1), 1–15.  https://doi.org/10.1007/s12518-013-0120-x.CrossRefGoogle Scholar
  31. Pajares, G. (2015). Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetric Engineering & Remote Sensing.  https://doi.org/10.14358/PERS.81.4.281 CrossRefGoogle Scholar
  32. Panagiotidis, D., Abdollahnejad, A., Surový, P., & Chiteculo, V. (2017). Determining tree height and crown diameter from high-resolution UAV imagery. International Journal of Remote Sensing., 38, 2392–2410.  https://doi.org/10.1080/01431161.2016.1264028.CrossRefGoogle Scholar
  33. Pérez, M., Agüera, F., & Carvajal, F. (2013). Low cost surveying using an unmanned aerial vehicle. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences., XL-1/W2, 311–315.  https://doi.org/10.5194/isprsarchives-XL-1-W2-311-2013.CrossRefGoogle Scholar
  34. Puliti, S., Ørka, H. O., Gobakken, T., & Næsset, E. (2015). Inventory of small forest areas using an unmanned aerial system. Remote Sensing., 7, 9632–9654.  https://doi.org/10.3390/rs70809632.CrossRefGoogle Scholar
  35. R Core Team. (2019). R: a language and environment for statistical computing (R version 3.5.2.). Vienna: R Foundation for Statistical Computing http://www.R-project.org/. Accessed 07 Jan 2019.
  36. Siebert, S., & Teizer, J. (2014). Mobile 3D mapping for surveying earthwork projects using an unmanned aerial vehicle (UAV) system. Automation in Construction., 41, 1–14.  https://doi.org/10.1016/j.autcon.2014.01.004.CrossRefGoogle Scholar
  37. Silva, C. A., Crookston, N. L., Hudak, A. T., Vierling, L. A., Klauberg, C., & Silva, M. C. A. (2017). rLiDAR: an R package for reading, processing and visualizing LiDAR (Light Detection and Ranging) data, version 0.1.1.Google Scholar
  38. Smith, M. W., Carrivick, J. L., & Quincey, D. J. (2016). Structure from motion photogrammetry in physical geography. Progress in Physical Geography, 40(2), 247–275.CrossRefGoogle Scholar
  39. Tang, L., & Shao, G. (2015). Drone remote sensing for forestry research and practices. Journal of Forestry Research., 26, 791–797.  https://doi.org/10.1007/s11676-015-0088-y.CrossRefGoogle Scholar
  40. Torresan, C., Berton, A., Carotenuto, F., Di Gennaro, S. F., Gioli, B., Matese, A., et al. (2017). Forestry applications of UAVs in Europe: a review. International Journal of Remote Sensing., 38, 2427–2447.  https://doi.org/10.1080/01431161.2016.1252477.CrossRefGoogle Scholar
  41. Universel Ground Control System (UgCS). (2019). Desktop Application Version 3.1 (871) user manual. UcGS Desktop Application Version 3.1 (871) User Manuel. https://www.ugcs.com/files/manuals/v.3.1/UgCS_User_manual_3.1_871.pdf. Accessed 19.01.2019.
  42. Vauhkonen, J., Ene, L., Gupta, S., Heinzel, J., Holmgren, J., Pitkänen, J., et al. (2012). Comparative testing of single-tree detection algorithms under different types of forest. Forestry., 85, 27–40.  https://doi.org/10.1093/forestry/cpr051.CrossRefGoogle Scholar
  43. Wallace, L., Lucieer, A., Malenovskỳ, Z., Turner, D., & Vopěnka, P. (2016). Assessment of forest structure using two UAV techniques: a comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests., 7.  https://doi.org/10.3390/f7030062.CrossRefGoogle Scholar
  44. Watts, A. C., Ambrosia, V. G., & Hinkley, E. A. (2012). Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use. Remote Sensing., 4, 1671–1692.  https://doi.org/10.3390/rs4061671.CrossRefGoogle Scholar
  45. Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). “Structure-from-Motion” photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology., 179, 300–314.  https://doi.org/10.1016/j.geomorph.2012.08.021.CrossRefGoogle Scholar
  46. Yilmaz, H. M. (2010). Close range photogrammetry in volume computing. Experimental Techniques., 34, 48–54.  https://doi.org/10.1111/j.1747-1567.2009.00476.x.CrossRefGoogle Scholar
  47. Yurtseven, H., Akgul, M., Coban, S., & Gulci, S. (2019). Determination and accuracy analysis of individual tree crown parameters using UAV based imagery and OBIA techniques. Measurement, 145, 651–664.  https://doi.org/10.1016/j.measurement.2019.05.092.CrossRefGoogle Scholar
  48. Zhang, J., Hu, J., Lian, J., Fan, Z., Ouyang, X., & Ye, W. (2016). Seeing the forest from drones: testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation., 198, 60–69.  https://doi.org/10.1016/j.biocon.2016.03.027.CrossRefGoogle Scholar
  49. Zhao, G., Shao, G., Reynolds, K. M., Wimberly, M. C., Warner, T., Moser, J. W., et al. (2005). Digital forestry: a white paper. Journal of forestry, 103(1), 47–50.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Forest Engineering, Faculty of ForestryKahramanmaras Sutcu Imam UniversityOnikisubatTurkey

Personalised recommendations