Advertisement

Distribution and health risk assessment of cadmium, lead, and mercury in freshwater fish from the right bank of Senegal River in Mauritania

  • Mohamed Salem El Mahmoud-HamedEmail author
  • Sarah Montesdeoca-Esponda
  • Angelo Santana-Del Pino
  • Mohamed Lemine Zamel
  • Mohamed Brahim
  • Hasni T’feil
  • José Juan Santana-Rodiguez
  • Zeinebou Sidoumou
  • Mohamed Sidi’Ahmed-Kankou
Article
  • 40 Downloads

Abstract

Clarias gariepinus (African catfish) and Oreochromis niloticus (Tilapia fish) from the right North bank of the Senegal River in Mauritania (Rosso, Boghé, and Kaédi) were sampled during 1-year monitoring and tested for lead (Pb), cadmium (Cd), and mercury (Hg) levels. Fishing from the Senegal River is an essential source of food for the local population and these two species are the most common. Muscle presents higher Hg concentrations than liver and gills for both species. Gill Hg concentrations from Kaédi are higher than Boghé and Rosso for both species. The Cd levels measured in gills were low in the different locations and revealed high variation throughout the 1-year study. No significant differences were observed between concentrations of Cd in Clarias gariepinus and Oreochromis niloticus parts. Statistical treatment did not show a considerable variation of Pb concentration between the different parts, revealing lower levels in gills from Boghé than the ones from Kaédi and Rosso. The associated human health risk was calculated from the concentration levels using the target hazard quotient (THQ) approach. Even though all the THQ values and the hazard index were lower than 1 for the determined trace metals when the exposure frequency was not greater than three times a week, eating frequency in the studied locations sometimes is greater than five, thus posing a health risk, especially at Kaédi and Boghé.

Keywords

Clarias gariepinus Oreochromis niloticus Trace metals Senegal River Mauritania Human health risk 

Notes

Acknowledgments

The authors gratefully acknowledge Erasmus+ program (KA107) for financing the mobility to Universidad de Las Palmas de Gran Canaria (ULPGC) and would like to extend our sincere appreciation to the National Office of Health Inspection of Fish and Aquaculture´s Products (ONISPA) for providing the materials and chemicals needed to successfully conduct this study. We wish also to thank Mr. Meiloud Ahmed Salem from artisanal fish direction at Mauritanian Fish Ministry, Mr. Mohamed O. Ahmed Taleb from Mauritanian Institute of Oceanographic research and fish (IMROP) for used animal identification, and Mrs. Rahma Kane from English Language Fellow Mauritania (2017-2018) for the revision of the English language.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Atli, G., & Canli, M. (2010). Response of antioxidant system of freshwater fish Oreochromis niloticus to acute and chronic metal (Cd, Cu, Cr, Zn, Fe) exposures. Ecotoxicology and Environmental Safety, 73, 1884–1889.CrossRefGoogle Scholar
  2. Atobatele, O. E., & Olutona, G. O. (2015). Distribution of three non-essential trace metals (Cadmium, Mercuryand Lead) in the organs of fish from Aiba Reservoir, Iwo, Nigeria. Toxicology Reports, 2, 896–903.CrossRefGoogle Scholar
  3. Authman, M. M. N. (2008). Oreochromis niloticus as a biomarker of heavy metal pollution with emphasis on potential risk and relation to some bilogical aspects. Global Veterinaria, 2, 104–109.Google Scholar
  4. Cheikh, M. L., Harouna, T., Mohamed Salem, M., Cherif Ahmed, A., Mamadou, L. B., Dartige, A. Y. (2009). Suivi sanitaire des zones de production des mollusques bivalves en Mauritanie., «le 8eme congrès magrébine des sciences de la mer » et « la coopération arabo – arabe et arabo – européen pour la sauvegarda des aux marine contre la pollution »; 9-10 octobre 2009 Nouakchott – Mauritanie.Google Scholar
  5. Coetzee, L., Preez, H. H., & Vuren, J. H. J. (2002). Metal concentrations in Clarias gariepinus and Labeo umbratus from the Olifants and Klein Olifants River, Mpumalanga, South Africa: zinc, copper, manganese, lead, chromium, nickel, aluminium and iron. Water SA, 28(4), 434–448.CrossRefGoogle Scholar
  6. Diallo, D. A., Namr, I. K., Garmez, H., Ould Kankou, M. O. S. A., N’diaye, A. D., & Choukri, A. (2014). Metal trace elements in soils of the area M’bouria – Mauritania. Carpathian Journal of Earth and Environmental Sciences, 9(3), 261–271.Google Scholar
  7. Dig-Acids. (2001). Guide lines for microwave acid digestion. In: E.D,(Ed.). Dig Acid. http://www.scribd.com/doc/6789831/DigAcids.
  8. Echols, K. R., Meadows, J. C., & Orazio, C. E. (2009). Pollution of aquatic ecosystems II: hydrocarbons, synthetic organics, radionuclides, heavy metals, acids, and thermal pollution (pp. 120–129). Amsterdam: Elsevier Inc.Google Scholar
  9. El-Naggar, A. M., Mahmoud, S. A., & Tayel, S. I. (2009). Bioaccumulation of some heavy metals and histopathological alterations in liver of Oreochromis niloticus in relation to water quality at different localities along the River Nile, Egypt. World Journal of Fish and Marine Sciences, 1(2), 105–114.Google Scholar
  10. Ennouri, R., Chouba, L., & Kraiem, M. M. (2008). Evaluation de la contamination chimique par les métaux traces (Cd, Pb, Hg et Zn) du Zooplancton et de la Sardinelle (Sardinella aurita) dans le golfe de Tunis. Bulletin de l'Institut National des Sciences et Technologies de la Mer de Salammbo, 35, 87–94.Google Scholar
  11. Fadel, K. M., Taouil, H., Elanza, S., Doubi, M., El Assyry, A., Hanafi, H., Amine, A., Houmani, H., & Ibn Ahmed, S. (2017). Physicochemical water from the right bank of Senegal River in Mauritania. JMES, 8(8), 2956–2966.Google Scholar
  12. Guerra, K., Konz, J., Lisi, K., Neebrem, C. (2010). Exposure factors handbook. USEPA, Washington D.C.Google Scholar
  13. IAEA. (2018). Report ofworldwide Inter-laboratory comparison on the determination of trace elements in fish sample IAEA-MESL-ILC-TE-BIOTA-2017. Vienna.Google Scholar
  14. IMROP. (2014). Institut Mauritanien de recherché Océanographique et de pêche ; Rapport d’activité d’antenne de Kaédi; 1er trimestre 2014, pp. 14.Google Scholar
  15. Jiang, Z., Xu, N., Liu, B., Zhou, L., Wang, J., Wang, C., Dai, B., & Xiong, W. (2018). Metal concentrations and risk assessment in water, sediment and economic fish species with various habitat preferences and trophic guilds from Lake Caizi, Southeast China. Ecotoxicology and Environmental Safety, 157, 1–8.CrossRefGoogle Scholar
  16. Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, (3):686–692.Google Scholar
  17. Mbaye, M. L., Gaye, A. T., Spitzy, A., Dähnke, K., Afoudab, A., & Gaye, B. (2016). Seasonal and spatial variation in suspended matter, organic carbon, nitrogen, and nutrient concentrations of the Senegal River in West Africa. Limnologica, 57, 1–13.CrossRefGoogle Scholar
  18. Mendil, D., Ömer, F. Ü., Mustafa, T., & Mustafa, S. (2010). Determination of trace metals in different fish species and sediments from the River Yesilırmak inTokat, Turkey. Food and Chemical Toxicology, 48, 1383–1392.CrossRefGoogle Scholar
  19. Monferrán, M. V., Garnero, P., Bistoni, M., Anbar, A. A., Gordon, G. W., & Wunderlin, D. A. (2016). From water to edible fish. Transfer of metals and metalloids in the SanRoque Reservoir (Córdoba, Argentina). Implications associated withfish consumption. Ecological Indicators, 63, 48–60.CrossRefGoogle Scholar
  20. Moslen, M., & Miebaka, C. A. (2017). Heavy metal contamination in fish (Callinectis amnicola) from an estuarine creek in the Niger Delta, Nigeria and health risk evaluation. Bulletin of Environmental Contamination and Toxicology, 99, 506–510.CrossRefGoogle Scholar
  21. N’Diaye, A. D., Mint Mohamed Salem, K., El Kory, M. B., Ould Kankou, M. O. S. A., & Baudu, M. (2014a). Contribution to space and temporal study of the physicochemical quality of water from the Senegal River right bank. Journal of Materials and  Environmental Science, 5(1), 320–329.Google Scholar
  22. N’diaye, A. D., Mohamed, S., & Kankou, A. (2014b). Assessment of heavy metals in water of the Senegal River (Mauritania). Applied Science Reports, 5(3), 100–104.Google Scholar
  23. Obasohan, E. E., Oronsaye, J. A. O., & Eguavoen, O. I. (2008). A comparative assessment of the heavy metal loads in the tissues of a common catfish (Clarias gariepinus) from Ikpoba and Ogba Rivers in Benin City, Nigeria. African Scientist, 9(1), 13–23.Google Scholar
  24. OMVS. (2007). Renforcement des capacités nationales et régionales d’observation, transmission et traitement de données pour contribuer au développement durable du bassin du Fleuve Sénégal (p. 53). Senegal-Hycos.Google Scholar
  25. OMVS. (2010). Projet de gestion intégrée des ressources en eau et développement des usages multiples dans le bassin du fleuve sénégal : Etude pour la caractérisation (état des lieux) de la pêche et de l’aquaculture continentales et élaboration d’un plan de développement pour les sites retenus dans les Wilayas de Gorgol et Trarza, République Islamique de Mauritanie (p. 135). Rapport définitif.Google Scholar
  26. OMVS, Aspects socio-économique du fleuve Sénégal, 2018; disponible sur le site (consulté le 02 avril 2018): http://www.portail-omvs.org/gestion-ressource-et-environnement/fleuve-senegal/aspects-socio-economiques.
  27. Osman, A. G. M., & Kloas, W. (2010). Water quality and heavy metal monitoring in water, sediments, and tissues of the African catfish Clarias gariepinus (Burchell, 1822) from the River Nile, Egypt. Journal of Environmental Protection, 1, 389–400.CrossRefGoogle Scholar
  28. Potter, C., Zhang, P., Klooster, S., Genovese, V., Shekhar, S., & Kumar, V. (2004). Understanding controls on historical river discharge in the world’s largest drainage basins. Earth Interactions, 8, 1–21.CrossRefGoogle Scholar
  29. Ramachandra, T. V. (2006). Soil and ground water pollution from agricultural activities. New Delhi: Central Publishing Company.Google Scholar
  30. Rashed, M. N. (2001). Monitoring of environmental heavy metals in fish from Nasser Lake. Environment International, 27, 27–33.CrossRefGoogle Scholar
  31. Sidi Hamoud, F. S. M., Najy, M., El Rhaouat, O., Said, N. A., Bouna, M., Dick, B. A., M’bareck, C., Elkharrim, K., & Bilghyti, D. (2016). Hydrochimy of the high delta of the Senegal River (Rosso, Mauritania). International Journal of Innovation and Applied Studies, 18(4), 1132–1138.Google Scholar
  32. Storelli, M. M. (2008). Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food and Chemical Toxicology, 46, 2782–2788.CrossRefGoogle Scholar
  33. Taweel, A., Shuhaimi-Othman, M., & Ahmad, A. K. (2013). Assessment of heavy metals in tilapia fish (Oreochromis niloticus) from the Langat River and Engineering Lake in Bangi, Malaysia, and evaluation of the health risk from tilapia consumption. Ecotoxicology and Environmental Safety, 93, 45–51.CrossRefGoogle Scholar
  34. Tfeila, M. M., Kankou, M. O. S. A., Souabi, S., Aboulhassan, M. A., Taleb, A., & Bouezmarni, M. (2016). Monitoring of water physico-chemical quality of the Senegal River: the case of capture of Beni Nadji supplying drinking water of the Wilaya of Nouakchott. Journal of Materials and Environmental Science, 7(1), 148–160.Google Scholar
  35. Titilayo, A. O., & Olufemi, A. O. (2014). Bioaccumulation of heavy metals in fish (Clarias gariepinus) organs from selected streams in South Western Nigeria. 2nd International Conference on Sustainable Environment and Agriculture IPCBEE vol. 76, IACSIT Press, Singapore.  https://doi.org/10.7763/IPCBEE.2014.V76.10.
  36. USEPA. (2013). Integrated Risk Information System (IRIS). Whashington, DC: U. S. Environmental Protection Agency.Google Scholar
  37. Varol, M., & Sünbül, M. R. (2018). Multiple approaches to assess human health risks from carcinogenic and non-carcinogenic metals via consumption of five fish species from a large reservoir in Turkey. Science of the Total Environment, 633, 684–694.CrossRefGoogle Scholar
  38. Yahia, D., Elsharkawy, E. E., (2014). Multi pesticide and PCB residues in Nile tilapia and catfish in Assiut city, Egypt. Science of The Total Environment, 466–467:306–314.Google Scholar
  39. Yilmaz, A. B. (2003). Levels of heavy metals (Fe, Cu, Ni, Cr, Pb, and Zn) in tissue of Mugil cephalus and Trachurus mediterraneus from Iskenderun Bay, Turkey. Environmental Research, 92, 277–281.CrossRefGoogle Scholar
  40. Yohannes, Y. B., Ikenaka, Y., Nakayama, S. M. M., Saengtienchai, A., Watanabe, K., & Ishizuka, M. (2013). Organochlorine pesticides and heavy metals in fish from Lake Awassa, Ethiopia: insights from stable isotope analysis. Chemosphere, 91, 857–863.CrossRefGoogle Scholar
  41. Zhong, W., Zhang, Y., Wu, Z., Yang, R., Chen, X., Yang, J., & Zhu, L. (2018). Health risk assessment of heavy metals in freshwater fish in the central and eastern North China. Ecotoxicology and Environmental Safety, 157, 343–349.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohamed Salem El Mahmoud-Hamed
    • 1
    • 2
    Email author
  • Sarah Montesdeoca-Esponda
    • 3
  • Angelo Santana-Del Pino
    • 4
  • Mohamed Lemine Zamel
    • 2
  • Mohamed Brahim
    • 2
  • Hasni T’feil
    • 2
    • 5
  • José Juan Santana-Rodiguez
    • 3
  • Zeinebou Sidoumou
    • 5
  • Mohamed Sidi’Ahmed-Kankou
    • 1
  1. 1.Unité de recherche Eau, Pollution et Environnement (EPE), Département de chimie, faculté des sciences et techniques (FST)Université de Nouakchott Al-Aasriya (UNA), campus universitaire de NouakchottNouakchottMauritania
  2. 2.Département chimie microbiologie et suivi du milieu aquatique (DCM-SMA)office national d’inspection sanitaire des produits de la pêche et de l’aquaculture (ONISPA)NouadhibouMauritania
  3. 3.Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT)Universidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
  4. 4.Departamento de MatemáticasUniversidad de Las Palmas de Gran Canaria, Campus Universitario de TafiraLas Palmas de Gran CanariaSpain
  5. 5.Unité de recherche Ecobiologie marine et environnement (EBIOME), département biologie , faculté des sciences et techniques (FST)Université de Nouakchott Al-Aasriya (UNA), campus universitaire de NouakchottNouakchottMauritania

Personalised recommendations