Advertisement

Spatial and statistical trend characteristics of rainfall erosivity (R) in upper catchment of Baram River, Borneo

  • H. VijithEmail author
  • D. Dodge-Wan
Article
  • 20 Downloads

Abstract

The upper catchment region of the Baram River in Sarawak (Malaysian Borneo) is undergoing severe land degradation due to soil erosion. Heavy rainfall with high erosive power has led to a number of soil erosion hotspots. The goal of the present study is to generate an understanding about the spatial characteristics of seasonal and annual rainfall erosivity (R), which not only control sediment delivery from the region but also determine the quantity of material potentially eroded. Mean annual rainfall and rainfall erosivity range from 2170 to 5167 mm and 1632 to 5319 MJ mm ha−1 h−1 year−1, respectively. Seasonal rainfall and rainfall erosivity range from 848 to 1872 mm and 558 to 1883 MJ mm ha−1 h−1 year−1 for the southwest (SW) monsoon, 902 to 2200 mm and 664 to 2793 MJ mm ha−1h−1year−1 for the northeast (NE) monsoon and 400 to 933 mm and 331 to 1075 MJ mm ha−1 h−1 year−1 during the inter-monsoon (IM) period. Linear regression, Spearman's Rho and Mann Kendall tests were applied. Considering the regional mean rainfall erosivity in the study area, all the methods show an overall non-significant decreasing trend (− 9.34, − 0.25 and − 0.30 MJ mm ha−1 h−1 year−1, respectively for linear regression, Spearman’s Rho and Mann Kendall tests). However, during SW monsoon and IM periods, rainfall erosivity showed a non-significant decreasing trend (− 25.45, − 0.52, − 0.40, and − 8.86, − 1.07, − 0.77 MJ mm ha−1 h−1 year−1, respectively) whereas in NE, monsoon season erosivity showed a non-significant increasing trend (14.90, 1.59 and 1.60 MJ mm ha−1 h−1 year−1, respectively). The mean erosivity density ranges from 0.77 to 1.38 MJ ha1 h−1 year−1 and shows decreasing trend. Spatial distribution pattern of erosivity density indicates significantly higher occurrence of erosive rainfall in the lower elevation portion of the study area. The spatial pattern of mean rainfall erosivity trends (linear, Spearman’s Rho and Mann Kendall) suggests that the study area can be divided into two zones with increasing rainfall erosivity trends in the northern zone and decreasing trends in the southern zone. These results can be used to plan conservation measures to reduce sediment delivery from localized soil erosion hotspots.

Keywords

Erosivity Forested catchment Statistical trends Spatial characteristics 

Notes

Acknowledgements

They authors thank Curtin University Malaysia for facilities and other assistance and the Department of Irrigation and Drainage (DID), Malaysia for providing rainfall data. Authors are also thankful to the anonymous reviewer for critical review, constructive comments and suggestions, which significantly improved the quality of the manuscript.

Funding information

The authors wish to thank Sarawak Energy Berhad for funding this research under the Project “Mapping of Soil Erosion Risk” (grant number RD01/2014(C)).

References

  1. Angulo-Martínez, M., & Beguería, S. (2009). Estimating rainfall erosivity from daily precipitation records: a comparison among methods using data from the Ebro Basin (NE Spain). Journal of Hydrology, 379(1), 111–121.CrossRefGoogle Scholar
  2. Arnoldous, H. M. J. (1980). An approximation of the rainfall factor in the USLE in assessment of Erosion. Wiley Chichester: England.Google Scholar
  3. Ballabio, C., Borrelli, P., Spinoni, J., Meusburger, K., Michaelides, S., Beguería, S., Klik, A., Petan, S., Janeček, M., Olsen, P., & Aalto, J. (2017). Mapping monthly rainfall erosivity in Europe. Science of the Total Environment, 579, 1298–1315.CrossRefGoogle Scholar
  4. Basarin, B., Lukić, T., Pavić, D., & Wilby, R. L. (2016). Trends and multi-annual variability of water temperatures in the river Danube, Serbia. Hydrological Processes, 30(18), 3315–3329.CrossRefGoogle Scholar
  5. Belle, G., & Hughes, J. P. (1984). Nonparametric tests for trend in water quality. Water Resources Research, 20(1), 127–136.CrossRefGoogle Scholar
  6. Bols, P. (1978). The iso-erodent map of Java and Madura. Belgian technical assistance project ATA 105. Bogor: Soil Research Institute.Google Scholar
  7. Borrelli, P., Diodato, N., & Panagos, P. (2016). Rainfall erosivity in Italy: a national scale spatio-temporal assessment. International Journal of Digital Earth, 9(9), 835–850.CrossRefGoogle Scholar
  8. Brown, L. C., & Foster, G. R. (1987). Storm erosivity using idealized intensity distributions. Transactions of ASAE, 30, 379–386.CrossRefGoogle Scholar
  9. Burrough, P. A., & McDonnell, R. A. (1998). Creating continuous surfaces from point data. Principles of geographic information systems. Oxford: Oxford University Press.Google Scholar
  10. Campo, M., Casalí, J., & Giménez, R. (2016). Exploring the relationship between gully erosion and rainfall erosivity. In EGU General Assembly Conference Abstracts (Vol. 18, p. 6518).Google Scholar
  11. Cetin, M. (2015a). Evaluation of the sustainable tourism potential of a protected area for landscape planning: a case study of the ancient city of Pompeipolis in Kastamonu. International Journal of Sustainable Development and World Ecology, 22(6), 490–495.CrossRefGoogle Scholar
  12. Cetin, M. (2015b). Determining the bioclimatic comfort in Kastamonu City. Environmental Monitoring and Assessment, 187(10), 640.CrossRefGoogle Scholar
  13. Cetin, M. (2015c). Consideration of permeable pavement in landscape architecture. Journal of Environmental Protection and Ecology, 16(1), 385–392.Google Scholar
  14. Cetin, M. (2016a). Sustainability of urban coastal area management: a case study on Cide. Journal of Sustainable Forestry, 35(7), 527–541.CrossRefGoogle Scholar
  15. Cetin, M. (2016b). A change in the amount of CO2 at the Center of the Examination Halls: case study of Turkey. Studies on Ethno-Medicine, 10(2), 146–155.CrossRefGoogle Scholar
  16. Cetin, M. (2016c). Determination of bioclimatic comfort areas in landscape planning: a case study of Cide coastline. Turkish Journal of Agriculture-Food Science and Technology, 4(9), 800–804.CrossRefGoogle Scholar
  17. Cetin, M., & Sevik, H. (2016). Evaluating the recreation potential of Ilgaz Mountain National Park in Turkey. Environmental Monitoring and Assessment, 188(1), 52.CrossRefGoogle Scholar
  18. Cetin, M., Topay, M., Kaya, L. G., & Yilmaz, B. (2010). Efficiency of bioclimatic comfort in landscape planning process: case of Kutahya. Turkish Journal of Forestry, 1(1), 83–95.4.Google Scholar
  19. Cetin, M., Adiguzel, F., Kaya, O., & Sahap, A. (2018a). Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environment, Development and Sustainability, 20(1), 361–375.CrossRefGoogle Scholar
  20. Cetin, M., Sevik, H., & Yigit, N. (2018c). Climate type-related changes in the leaf micromorphological characters of certain landscape plants. Environmental Monitoring and Assessment, 190, 404.CrossRefGoogle Scholar
  21. Cetin, M., Zeren, I., Sevik, H., Cakir, C., & Akpinar, H. (2018d). A study on the determination of the natural park's sustainable tourism potential. Environmental Monitoring and Assessment, 190(3), 167.CrossRefGoogle Scholar
  22. Chen, F. W., & Liu, C. W. (2012). Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy and Water Environment, 10(3), 209–222.CrossRefGoogle Scholar
  23. Chen, T., Niu, R. Q., Li, P. X., Zhang, L. P., & Du, B. (2011). Regional soil erosion risk mapping using RUSLE, GIS, and remote sensing: a case study in Miyun Watershed, North China. Environmental Earth Sciences, 63(3), 533–541.CrossRefGoogle Scholar
  24. Diodato, N. (2006). Predicting RUSLE (revised universal soil loss equation) monthly erosivity index from readily available rainfall data in Mediterranean area. Environmentalist, 26(1), 63–70.CrossRefGoogle Scholar
  25. Diop, L., Bodia, A., & Dior, D. (2016). Spatiotemporal trend analysis of the mean annual rainfall in Senegal. European Science Journal, 12(12), 231–245.Google Scholar
  26. Douglas, I. (1996). The impact of land-use changes, especially logging, shifting cultivation, mining and urbanization on sediment yields in humid tropical Southeast Asia: a review with special reference to Borneo. IAHS Publications-Series of Proceedings and Reports-Intern Association Hydrological Sciences, 236, 463–472.Google Scholar
  27. Ferro, V., Porto, P., & Yu, B. (1999). A comparative study of rainfall erosivity estimation for southern Italy and southeastern Australia. Hydrological Sciences Journal, 44(1), 3–24.CrossRefGoogle Scholar
  28. Gaubi, I., Chaabani, A., Mammou, A. B., & Hamza, M. H. (2017). A GIS-based soil erosion prediction using the revised universal soil loss equation (RUSLE) (Lebna watershed, Cap Bon, Tunisia). Natural Hazards, 86(1), 219–239.CrossRefGoogle Scholar
  29. Gocic, M., & Trajkovic, S. (2014). Analysis of trends in reference evapotranspiration data in a humid climate. Hydrological Sciences Journal, 59(1), 165–180.CrossRefGoogle Scholar
  30. Gregersen, B., Aalbæk, J., Lauridsen, P. E., Kaas, M., Lopdrup, U., Veihe, A., & van der Keur, P. (2003). Land use and soil erosion in Tikolod, Sabah, Malaysia. ASEAN Review of Biodiversity and Environmental conservation (ARBEC), 1-11.Google Scholar
  31. Hashim, M., Reba, N. M., Nadzri, M. I., Pour, A. B., Mahmud, M. R., Yusoff, A. R. M., Ali, M. I., Jaw, S. W., & Hossain, M. S. (2016). Satellite-based run-off model for monitoring drought in peninsular Malaysia. Remote Sensing, 8(8), 633.CrossRefGoogle Scholar
  32. Hoyos, N., Waylen, P. R., & Jaramillo, Á. (2005). Seasonal and spatial patterns of erosivity in a tropical watershed of the Colombian Andes. Journal of Hydrology, 314(1), 177–191.CrossRefGoogle Scholar
  33. Huang, J., Zhang, J., Zhang, Z., & Xu, C. Y. (2013). Spatial and temporal variations in rainfall erosivity during 1960–2005 in the Yangtze River basin. Stochastic Environmental Research and Risk Assessment, 27(2), 337–351.CrossRefGoogle Scholar
  34. Kamaludin, H., Lihan, T., Ali Rahman, Z., Mustapha, M. A., Idris, W. M. R., & Rahim, S. A. (2013). Integration of remote sensing, RUSLE and GIS to model potential soil loss and sediment yield (SY). Hydrology and Earth System Sciences Discussions, 10(4), 4567–4596.CrossRefGoogle Scholar
  35. Kaya, E., Agca, M., Adiguzel, F., & Cetin, M. (2018a). Spatial data analysis with R programming for environment. Human and ecological risk assessment: An International Journal, 1-10. DOI:  https://doi.org/10.1080/10807039.2018.1470896.
  36. Kaya, L. G., Kaynakci-Elinc, Z., Yucedag, C., & Cetin, M. (2018b). Environmental outdoor plant preferences: a practical approach for choosing outdoor plants in urban or suburban residential areas in Antalya, Turkey. Fresenius Environmental Bulletin, 27(12), 7945–7952.Google Scholar
  37. Kendall, M. G. (1948). Rank correlation methods. London: Griffin.Google Scholar
  38. Kinnell, P. I. A. (2010). Event soil loss, runoff and the universal soil loss equation family of models: a review. Journal of Hydrology, 385, 384–397.CrossRefGoogle Scholar
  39. Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263.CrossRefGoogle Scholar
  40. Lee, J. H., & Heo, J. H. (2011). Evaluation of estimation methods for rainfall erosivity based on annual precipitation in Korea. Journal of Hydrology, 409(1), 30–48.CrossRefGoogle Scholar
  41. Lee, H. L., Koh, H. L., & Al Rabia ah, H. A. (2004). Predicting soil loss from logging in Malaysia. IAHS PUBLICATION, 308-315.Google Scholar
  42. Leow, C. S., Ghani, A. A., Zakaria, N. A., & Abidin, R. Z. (2011). Development of rainfall erosivity isohyet map for Peninsular Malaysia. In 3rd International Conference on Managing Rivers in the 21st Century: Sustainable Solutions for Global Crisis of Flooding, Pollution and Water Scarcity (pp. 748-756).Google Scholar
  43. Li, X., & Ye, X. (2018). Variability of rainfall erosivity and erosivity density in the Ganjiang river catchment, China: characteristics and influences of climate change. Atmosphere, 9, 48.  https://doi.org/10.3390/atmos9020048.CrossRefGoogle Scholar
  44. Lu, G. Y., & Wong, D. W. (2008). An adaptive inverse-distance weighting spatial interpolation technique. Computers & Geosciences, 34(9), 1044–1055.CrossRefGoogle Scholar
  45. Lu, D., Li, G., Valladares, G. S., & Batistella, M. (2004). Mapping soil erosion risk in Rondonia, Brazilian Amazonia: using RUSLE, remote sensing and GIS. Land Degradation and Development, 15(5), 499–512.CrossRefGoogle Scholar
  46. Luis, M. D., Raventós, J., González-Hidalgo, J. C., Sánchez, J. R., & Cortina, J. (2000). Spatial analysis of rainfall trends in the region of Valencia (East Spain). International Journal of Climatology, 20(12), 1451–1469.CrossRefGoogle Scholar
  47. Ma, X., He, Y., Xu, J., van Noordwijk, M., & Lu, X. (2014). Spatial and temporal variation in rainfall erosivity in a Himalayan watershed. Catena, 121, 248–259.CrossRefGoogle Scholar
  48. Malaysian Meteorological Department (MMD). (2009). Climate change scenarios for Malaysian 2001–2090 (pp. 1–84). Petaling Jaya: Malaysian Metrological Department, Scientific Report.Google Scholar
  49. Malaysian Meteorological Department (MMD) (2017) Malaysia’s climate: seasonal rainfall variation in Sabah and Sarawak. http://www.met.gov.my accessed on 12.07.2017.
  50. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259.CrossRefGoogle Scholar
  51. Meusburger, K., Steel, A., Panagos, P., Montanarella, L., & Alewell, C. (2012). Spatial and temporal variability of rainfall erosivity factor for Switzerland. Hydrology and Earth System Sciences, 16, 167–177.CrossRefGoogle Scholar
  52. Mir, S. I., Sahid, I., Gasim, M. B., Rahim, S. A., & Toriman, M. E. (2010). Soil loss assessment in the TasikChini catchment, Pahang, Malaysia. Geological Society of Malaysia Bulletin, 56, 1–7.CrossRefGoogle Scholar
  53. Mohtar, Z. A., Yahaya, A. S., & Ahmad, F. (2015). Rainfall erosivity estimation for northern and southern peninsular Malaysia using Fournier indexes. Procedia Engineering, 25, 179–184.CrossRefGoogle Scholar
  54. Mojaddadi Rizeei, H., Saharkhiz, M. A., Pradhan, B., & Ahmad, N. (2015). Soil erosion prediction based on land cover dynamics at the Semenyih watershed in Malaysia using LTM and USLE models. Geocarto International, 31, 1158–1177.  https://doi.org/10.1080/10106049.2015.1120354.CrossRefGoogle Scholar
  55. Montgomery, D. C., Peck, E. A., & Vining, G. G. (2015). Introduction to linear regression analysis. John Wiley & Sons.Google Scholar
  56. Morgan, R. P. C. (1974). Estimating regional variations in soil erosion hazard in peninsular Malaysia. Malayan Nature Journal, 28, 94–106.Google Scholar
  57. Morgan, R. P. C., & Davidson, D. A. (1991). Soil erosion and conservation. U.K.: Longman Group.Google Scholar
  58. Moses, A. N. (2017). Spatial variation of rainfall runoff Erosivity (R) factor for river Nzoia Basin, Western Kenya. Technology, 8(2), 418–422.Google Scholar
  59. Nearing, M. A., Yin, S. Q., Borrelli, P., & Polyakov, V. O. (2017). Rainfall erosivity: an historical review. Catena, 157, 357–362.CrossRefGoogle Scholar
  60. de Neergaard, A., Magid, J., & Mertz, O. (2008). Soil erosion from shifting cultivation and other smallholder land use in Sarawak, Malaysia. Agriculture, Ecosystems & Environment, 125(1), 182–190.CrossRefGoogle Scholar
  61. Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied linear statistical models, 4, 318. Chicago: Irwin.Google Scholar
  62. Oliveira, P. T. S., Wendland, E., & Nearing, M. A. (2013). Rainfall erosivity in Brazil: a review. Catena, 100, 139–147.CrossRefGoogle Scholar
  63. Özcan, A. U., Uzun, O., Başaran, M., Erpul, G., Akşit, S., & Palancıoğlu, H. M. (2015). Soil erosion risk assessment for volcano cone of Alidaği Mountain by using USLE/RUSLE, GIS and geostatistics. Fresenius Environmental Bulletin, 24(6), 2090–2100.Google Scholar
  64. Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., & Alewell, C. (2015a). The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy, 54, 438–447.CrossRefGoogle Scholar
  65. Panagos, P., Ballabio, C., Borrelli, P., Meusburger, K., Klik, A., Rousseva, S., Tadić, M. P., Michaelides, S., Hrabalíková, M., Olsen, P., & Aalto, J. (2015b). Rainfall erosivity in Europe. Science of the Total Environment, 511, 801–814.CrossRefGoogle Scholar
  66. Panagos, P., Ballabio, C., Borrelli, P., & Meusburger, K. (2016). Spatio-temporal analysis of rainfall erosivity and erosivity density in Greece. Catena, 137, 161–172.CrossRefGoogle Scholar
  67. Panagos, P., Borrelli, P., Meusburger, K., Yu, B., Klik, A., Lim, K.J., Yang, J.E., Ni, J., Miao, C., Chattopadhyay, N., & Sadeghi, S.H. (2017). Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific reports, 7(1), p.4175Google Scholar
  68. Partal, T., & Kahya, E. (2006). Trend analysis in Turkish precipitation data. Hydrological Processes, 20(9), 2011–2026.CrossRefGoogle Scholar
  69. Prasannakumar, V., Vijith, H., Abinod, S., & Geetha, N. (2012). Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using revised universal soil loss equation (RUSLE) and geo-information technology. Geoscience Frontiers, 3(2), 209–215.CrossRefGoogle Scholar
  70. Rahman, M. A., Yunsheng, L., & Sultana, N. (2016). Analysis and prediction of rainfall trends over Bangladesh using Mann–Kendall, Spearman’s rho tests and ARIMA model. Meteorology and Atmospheric Physics, 1–16.Google Scholar
  71. Ramos, M. C., & Durán, B. (2014). Assessment of rainfall erosivity and its spatial and temporal variabilities: case study of the Penedès area (NE Spain). Catena, 123, 135–147.CrossRefGoogle Scholar
  72. Renard, K. G., & Freimund, J. R. (1994). Using monthly precipitation data to estimate the R factor in the revised USLE. Journal of Hydrology, 157, 287–306.CrossRefGoogle Scholar
  73. Renard, K. G., Foster, G. R., Weesies, G. A., & Porter, J. P. (1991). RUSLE: revised universal soil loss equation. Journal of Soil and Water Conservation, 46(1), 30–33.Google Scholar
  74. Renschler, C. S., Mannaerts, C., & Diekkrüger, B. (1999). Evaluating spatial and temporal variability in soil erosion risk—rainfall erosivity and soil loss ratios in Andalusia, Spain. Catena, 34(3), 209–225.CrossRefGoogle Scholar
  75. Roose, E. J. (1977). Application of the universal soil loss equation of Wischmeier and Smith in West Africa. In D. J. Greenland & R. Lal (Eds.), Soil conservation and management in the humid tropics (pp. 177–187). London: Wiley.Google Scholar
  76. Rozos, D., Skilodimou, H. D., Loupasakis, C., & Bathrellos, G. D. (2013). Application of the revised universal soil loss equation model on landslide prevention. An example from N. Euboea (Evia) Island, Greece. Environmental Earth Sciences, 70(7), 3255–3266.CrossRefGoogle Scholar
  77. Scherrer, S. C., Fischer, E. M., Posselt, R., Liniger, M. A., Croci-Maspoli, M., & Knutti, R. (2016). Emerging trends in heavy precipitation and hot temperature extremes in Switzerland. Journal of Geophysical Research: Atmospheres, 121(6), 2626–2637.Google Scholar
  78. Shadmani, M., Marofi, S., & Roknian, M. (2012). Trend analysis in reference evapotranspiration using Mann-Kendall and Spearman’s rho tests in arid regions of Iran. Water Resources Management, 26(1), 211–224.CrossRefGoogle Scholar
  79. Shamshad, A., Azhari, M. N., Isa, M. H., Wan Hussin, W. M. A., & Parida, B. P. (2002). Development of an appropriate procedure for estimation of RUSLE EI30 index and preparation of erosivity maps for Pulau Penang in peninsular Malaysia. Catena, 72, 423–432.CrossRefGoogle Scholar
  80. da Silva, A. M. (2004). Rainfall erosivity map for Brazil. Catena, 57(3), 251–259.CrossRefGoogle Scholar
  81. Singh, G., Rambabu, & Subhash, C. (1981). Soil loss prediction research in India. Bull. No. T-12/D- 9. Dehradun: CSWCR& TI.Google Scholar
  82. Suparta, W., & Yatim, A. N. M. (2017). An analysis of heat wave trends using heat index in East Malaysia. In Journal of Physics: Conference Series, 852(1), p. 012005. IOP Publishing.Google Scholar
  83. Tayyab, M., Zhou, J., Adnan, R., & Zahra, A. (2017). Monthly precipitation trend analysis by applying nonparametric Mann-Kendall (MK) and Spearman’s rho (SR) tests in Dongting Lake, China: 1961-2012. Indonesian Journal of Electrical Engineering and Computer Science, 5(1), 41–47.CrossRefGoogle Scholar
  84. Vijith, H., Seling, L. W., & Dodge-Wan, D. (2018a). Effect of cover management factor in quantification of soil loss: case study of Sungai Akah subwatershed, Baram River basin Sarawak, Malaysia. Geocarto international, 33(5), 505-521Google Scholar
  85. Vijith, H., Seling, L. W., & Dodge-Wan, D. (2018b). Estimation of soil loss and identification of erosion risk zones in a forested region in Sarawak, Malaysia, Northern Borneo. Environment, development and sustainability, 20(3), 1365-1384Google Scholar
  86. Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses-a guide to conservation planning. Predicting rainfall erosion losses-a guide to conservation planning. U.S. Department of Agriculture Handbook, No. 537Google Scholar
  87. Wong, C. L., Venneker, R., Uhlenbrook, S., Jamil, A. B. M., & Zhou, Y. (2009). Variability of rainfall in peninsular Malaysia. Hydrology and Earth System Sciences Discussions, 6(4), 5471–5503.CrossRefGoogle Scholar
  88. Wu, H., & Qian, H. (2017). Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. International Journal of Climatology, 37(5), 2582–2592.CrossRefGoogle Scholar
  89. Xin, Z., Yu, X., Li, Q., & Lu, X. X. (2011). Spatiotemporal variation in rainfall erosivity on the Chinese loess plateau during the period 1956–2008. Regional Environmental Change, 11(1), 149–159.CrossRefGoogle Scholar
  90. Yin, S., Xie, Y., Liu, B., & Nearing, M. A. (2015). Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions. Hydrology and Earth System Sciences Discussions, 12, 4965–4996.CrossRefGoogle Scholar
  91. Yu, B., & Rosewell, C. J. (1996). An assessment of a daily rainfall erosivity model for New South Wales, Australia. Journal of Soil Research, 34, 139–152.CrossRefGoogle Scholar
  92. Yu, B., Hashim, G. M., & Eusof, Z. (2001). Estimating the R-factor with limited rainfall data: a case study from peninsular Malaysia. Journal of Soil and Water Conservation, 56(2), 101–105.Google Scholar
  93. Yucedag, C., Kaya, L. G., & Cetin, M. (2018). Identifying and assessing environmental awareness of hotel and restaurant employees’ attitudes in the Amasra District of Bartin. Environmental Monitoring and Assessment, 190(2), 60.CrossRefGoogle Scholar
  94. Yue, B. J., Shi, Z. H., & Fang, N. F. (2014). Evaluation of rainfall erosivity and its temporal variation in the Yanhe River catchment of the Chinese Loess Plateau. Natural Hazards, 74(2), 585–602.CrossRefGoogle Scholar
  95. Zhang, W. B., Xie, Y., & Liu, B. Y. (2002). Rainfall erosivity estimation using daily rainfall amounts. Scientia Geographica Sinica, 22, 705–711.Google Scholar
  96. Zhao, Q., Liu, Q., Ma, L., Ding, S., Xu, S., Wu, C., & Liu, P. (2017). Spatiotemporal variations in rainfall erosivity during the period of 1960–2011 in Guangdong Province, southern China. Theoretical and Applied Climatology, 128(1–2), 113–128.CrossRefGoogle Scholar
  97. Zhijia, G., Xingwu, D., Bing, L., Jinming, H., & Jiaonan, H. (2016). The spatial distribution and temporal variation of rainfall erosivity in the Yunnan plateau, Southwest China: 1960–2012. Catena, 145, 291–300.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Applied Geology, Faculty of Engineering and ScienceCurtin University MalaysiaMiriMalaysia

Personalised recommendations