Risk element accumulation in Coleoptera and Hymenoptera (Formicidae) living in an extremely contaminated area—a preliminary study

  • Dilnora Mukhtorova
  • Jakub Hlava
  • Jiřina SzákováEmail author
  • Štěpán Kubík
  • Vladimír Vrabec
  • Pavel Tlustoš


The risk element accumulation ability of two groups of epigeic species, insects from families Coleoptera and Hymenoptera (namely Formicidae), was determined and related to soil risk element content and bioaccessibility. The study was conducted in the district of Příbram, Czech Republic, which was characterised by extremely high aged pollution in the soils, including risk elements, especially As, Pb, Zn and Cd, due to the former mining and smelting activity. Four sampling sites differing in their pseudo-total risk element contents were selected and composite samples of individuals representing either Coleoptera or Formicidae were sampled at the individual sampling points. The results indicate the ability of Coleoptera and Formicidae organisms to accumulate risk elements, especially at the location with extremely high soil risk element content. In soil containing up to 841 mg As kg−1, 84.6 mg Cd kg−1, 4250 mg Pb kg−1 and 8542 mg Zn kg−1, contents in insect bodies reached 239 mg As kg−1 As, 24.2 mg Cd kg−1, 70.4 mg Pb kg−1 and 335 mg Zn kg−1 in beetles and up to 20.9 mg As kg−1, 29.9 mg Cd kg−1, 111 mg Pb kg−1 and 657 mg Zn kg−1 in ants. Therefore, bioaccumulation factors (BAFs) varied between 0.02 and 0.55. Increasing Cd content in Coleoptera bodies with increasing soil pseudo-total element content was observed only among the investigated elements. However, the results indicate increasing BAF values with decreasing soil element levels, especially for Cd, Pb and Zn, indicating limited uptake of elements by the organisms living in contact with extremely contaminated soil.


Soil Risk elements Anthropogenic contamination Coleoptera Hymenoptera 



Correction and improvement of language were provided by Ltd., Devonshire Business Centre, Works Road, Letchworth Garden City SG6 1GJ, United Kingdom.

Funding information

Financial support was from the GAČR 17-00859S project, and and European Regional Development Fund-Project No. CZ.02.1.01/0.0/0.0/16_019/0000845.

Supplementary material

10661_2019_7584_MOESM1_ESM.docx (284 kb)
ESM 1 (DOCX 284 kb)


  1. Anonymous. (2016). Public notice no. 153/2016 about the conditions for the protection of the agricultural soil quality. Legal code of The Czech Republic, 2692–2699.Google Scholar
  2. Babin-Fenske, J., & Anand, M. (2011). Patterns of insect communities along a stress gradient following decommissioning of a cu-Ni smelter. Environmental Pollution, 159, 3036–3043.CrossRefGoogle Scholar
  3. Bednarska, A. J., & Stachowicz, I. (2013). Costs of living in metal polluted areas: Respiration rate of the ground beetle Pterostichus oblongopunctatus from two gradients of metal pollution. Ecotoxicology, 22, 118–124.CrossRefGoogle Scholar
  4. Bednarska, A. J., Swiatek, Z. M., Paciorek, K., & Kubinska, N. (2017). Effect of cadmium bioavailability in food on its compartmentalisation in carabids. Ecotoxicology, 26, 1259–1270.CrossRefGoogle Scholar
  5. Beeby, A., & Richmond, L. (2010). Magnesium and the regulation of lead in three populations of the garden snail Cantareus aspersus. Environmental Pollution, 158, 2288–2293.CrossRefGoogle Scholar
  6. Belskaya, E., Gilev, A., & Belskii, E. (2017). Ant (Hymenoptera, Formicidae) diversity along a pollution gradient near the middle Ural copper smelter, Russia. Environmental Science and Pollution Research, 24, 10768–10777.CrossRefGoogle Scholar
  7. Berger, B., & Dallinger, R. (1993). Terrestrial snails as quantitative indicators of environmental metal pollution. Environmental Monitoring and Assessment, 25, 65–84.CrossRefGoogle Scholar
  8. Bernard, F., Brulle, F., Douay, F., Lemiere, S., Demuynck, S., & Vandenbulcke, F. (2010). Metallic trace element body burdens and gene expression analysis of biomarker candidates in Eisenia fetida, using an "exposure/depuration" experimental scheme with field soils. Ecotoxicology and Environmental Safety, 73, 1034–1045.CrossRefGoogle Scholar
  9. Boyle, S., & Kakouli-Duarte, T. (2018). The behaviour of the nematode, Steinernema feltiae (Nematoda: Steinernematidae) in sand contaminated with the industrial pollutant chromium VI. Ecotoxicology, 27, 590–604.CrossRefGoogle Scholar
  10. Butovsky, R. O. (2011). Heavy metals in carabids (Coleoptera, Carabidae). ZooKeys, 100, 215.CrossRefGoogle Scholar
  11. Button, M., Moriarty, M. M., Watts, M. J., Zhang, J., Koch, I., & Reimer, K. J. (2011). Arsenic speciation in field-collected and laboratory-exposed earthworms Lumbricus terrestris. Chemosphere, 85, 1277–1283.CrossRefGoogle Scholar
  12. Cao, C., Zhang, Q., Ma, Z. B., Wang, X. M., Chen, H., & Wang, J. J. (2018). Fractionation and mobility risks of heavy metals and metalloids in wastewater-irrigated agricultural soils from greenhouses and fields in Gansu, China. Geoderma, 328, 1–9.CrossRefGoogle Scholar
  13. Chen, Y. Y., Dong, B. B., & Xin, J. (2017). Occurrence and fractionation of Cr along the Loushan River affected by a chromium slag heap in East China. Environmental Science and Pollution Research, 24, 15655–15666.CrossRefGoogle Scholar
  14. Creamer, R. E., Rimmer, D. L., & Black, H. I. J. (2008). Do elevated soil concentrations of metals affect the diversity and activity of soil invertebrates in the long-term? Soil Use and Management, 24, 37–46.CrossRefGoogle Scholar
  15. Dallinger, R. (1994). Invertebrate organisms as biological indicators of heavy-metal pollution. Applied Biochemistry and Biotechnology, 48, 27–31.CrossRefGoogle Scholar
  16. Dallinger, R., Berger, B., & Birkel, S. (1992). Terrestrial isopods - useful biological indicators of urban metal pollution. Oecologia, 89, 32–41.CrossRefGoogle Scholar
  17. Dvořák, T., Száková, J., Kroulíková, S., Košnář, Z., Holečková, Z., Najmanová, J., & Tlustoš, P. (2017). Content of inorganic and organic pollutants and their mobility in bottom sediment from the Orlík water reservoir (Vltava river, Czech Republic). Soil & Sediment Contamination, 26, 584–604.CrossRefGoogle Scholar
  18. Eeva, T., Sorvari, J., & Koivunen, V. (2004). Effects of heavy metal pollution on red wood ant (Formica s. str.) populations. Environmental Pollution, 132, 533–539.CrossRefGoogle Scholar
  19. Ernst, G., Zimmermann, S., Christie, P., & Frey, B. (2008). Mercury, cadmium and lead concentrations in different ecophysiological groups of earthworms in forest soils. Environmental Pollution, 156, 1304–1313.CrossRefGoogle Scholar
  20. Ettler, V., Rohovec, J., Navratil, T., & Mihaljevic, M. (2007). Mercury distribution in soil profiles polluted by lead smelting. Bulletin of Environmental Contamination and Toxicology, 78, 13–17.CrossRefGoogle Scholar
  21. Filipek-Mazur, B., Mazur, K., & Gondek, K. (2001). The effect of organic fertilisers on distribution of heavy metals among fractions in soil. Rostlinná Výroba, 47, 123–128.Google Scholar
  22. Fröhlichová, A., Száková, J., Najmanová, J., & Tlustoš, P. (2018). An assessment of the risk of element contamination of urban and industrial areas using Taraxacum sect. Ruderalia as a bioindicator. Environmental Monitoring and Assessment, 190, 150.CrossRefGoogle Scholar
  23. Fuksova, Z., Szakova, J., & Tlustos, P. (2009). Effects of co-cropping on bioaccumulation of trace elements in Thlaspi caerulescens and Salix dasyclados. Plant, Soil and Environment, 55, 461–467.CrossRefGoogle Scholar
  24. Ghannem, S., Khazri, A., Sellami, B., & Boumaiza, M. (2016). Assessment of heavy metal contamination in soil and Chlaenius (Chlaeniellus) olivieri (Coleoptera, Carabidae) in the vicinity of a textile factory near Ras Jbel (Bizerte, Tunisia). Environmental Earth Science, 75.Google Scholar
  25. Ghannem, S., Touaylia, S., & Boumaiza, M. (2018a). Beetles (Insecta: Coleoptera) as bioindicators of the assessment of environmental pollution. Human and Ecological Risk Assessment, 24, 456–464.CrossRefGoogle Scholar
  26. Ghannem, S., Touaylia, S., & Mustapha, B. (2018b). Assessment of trace metals contamination in soil, leaf litter and leaf beetles (Coleoptera, Chrysomelidae) in the vicinity of a metallurgical factory near Menzel Bourguiba, (Tunisia). Human and Ecological Risk Assessment, 24, 991–1002.CrossRefGoogle Scholar
  27. Gongalsky, K. B., Filimonova, Z. V., Pokarzhevskii, A. D., & Butovsky, R. O. (2007). Differences in responses of herpetobionts and geobionts to impact from the Kosogorsky metallurgical plant (Tula region, Russia). Russian Journal of Ecology, 38, 52–57.CrossRefGoogle Scholar
  28. Gramigni, E., Calusi, S., Gelli, N., Giuntini, L., Massi, M., Delfino, G., Chelazzi, G., Baracchi, D., Frizzi, F., & Santini, G. (2013). Ants as bioaccumulators of metals from soils: Body content and tissue-specific distribution of metals in the ant Crematogaster scutellaris. European Journal of Soil Biology, 58, 24–31.CrossRefGoogle Scholar
  29. Green, I. D., & Walmsley, K. (2013). Time-response relationships for the accumulation of cu, Ni and Zn by seven-spotted ladybirds (Coccinella septempunctata L.) under conditions of single and combined metal exposure. Chemosphere, 93, 184–189.CrossRefGoogle Scholar
  30. Grzes, I. M. (2010). Ants and heavy metal pollution - a review. European Journal of Soil Biology, 46, 350–355.CrossRefGoogle Scholar
  31. Grzes, I. M. (2012). Zinc kinetics in the ant Myrmica rubra originating from a metal pollution gradient. Chemosphere, 88, 1015–1018.CrossRefGoogle Scholar
  32. Grzes, I. M., & Okrutniak, M. (2016). Pre-adaptive cadmium tolerance in the black garden ant. Chemosphere, 148, 316–321.CrossRefGoogle Scholar
  33. Heikens, A., Peijnenburg, W. J., & Hendriks, A. J. (2001). Bioaccumulation of heavy metals in terrestrial invertebrates. Environmental Pollution, 113, 385–393.CrossRefGoogle Scholar
  34. Hlava, J., Krupauerová, A., & Barták, M. (2013). Arthropod diversity in agrosystems under different management. Scientia Agriculturae Bohemica, 44, 85–89.CrossRefGoogle Scholar
  35. Hlava, J., Szakova, J., Vadlejch, J., Cadkova, Z., Balik, J., & Tlustos, P. (2017). Long-term application of organic matter based fertilisers: Advantages or risks for soil biota? A review. Environmental Reviews, 25, 408–414.CrossRefGoogle Scholar
  36. Hůrka, K., (2005). Beetles of Czech and Slovak Republic. Kabourek. 390 pp. (in Czech & English).Google Scholar
  37. Jiang, M. B., Wang, X. H., Liusui, Y. H., Sun, X. Q., Zhao, C. Y., & Liu, H. (2015). Diversity and abundance of soil animals as influenced by long-term fertilization in Grey Desert soil, China. Sustainability-Basel, 7, 10837–10853.CrossRefGoogle Scholar
  38. Judd, T. M., & Fasnacht, M. P. (2007). Distribution of micronutrients in social insects: A test in the termite Reticulitermes flavipes (Isoptera : Rhinotermitidae) and the ant Myrmica punctiventris (Hymenoptera : Formicidae). Annals of Entomological Society of America, 100, 893–899.CrossRefGoogle Scholar
  39. Kabata-Pendias, A. (2010). Trace elements in soils and plants (Vol. 548). CRC press.Google Scholar
  40. Kasemodel, M. C., Lima, J. Z., Sakamoto, I. K., Varesche, M. B., Trofino, J. C., & Rodrigues, V. G. (2016). Soil contamination assessment for Pb, Zn and cd in a slag disposal area using the integration of geochemical and microbiological data. Environmental Monitoring and Assessment, 188, 698.CrossRefGoogle Scholar
  41. Kavehei, A., Hose, G. C., & Gore, D. B. (2018). Effects of red earthworms (Eisenia fetida) on leachability of lead minerals in soil. Environmental Pollution, 237, 851–857.CrossRefGoogle Scholar
  42. Kheirallah, D. A., & El-Samad, L. M. (2019). Oogenesis anomalies induced by heavy metal contamination in two tenebrionid beetles (Blaps polycresta and Trachyderma hispida). Folia Biologica, 67, 9–23.CrossRefGoogle Scholar
  43. Komulainen, M., & Mikola, J. (1995). Soil processes as influenced by heavy-metals and the composition of soil Fauna. Journal of Applied Ecology, 32, 234–241.CrossRefGoogle Scholar
  44. Lagisz, M. (2008). Changes in morphology of the ground beetle Pterostichus oblongopunctatus (Coleoptera; Carabidae) from vicinities of a zinc and lead smelter. Environmental Toxicology and Chemistry, 27, 1744–1747.CrossRefGoogle Scholar
  45. Lair, G. J., Gerzabek, M. H., & Haberhauer, G. (2007). Retention of copper, cadmium and zinc in soil and its textural fractions influenced by long-term field management. European Journal of Soil Science, 58, 1145–1154.CrossRefGoogle Scholar
  46. Lindqvist, L., Block, M., & Tjalve, H. (1995). Distribution and excretion of cd, hg, methyl-hg and Zn in the predatory beetle Pterostichus niger (Coleoptera, Carabidae). Environmental Toxicology and Chemistry, 14, 1195–1201.CrossRefGoogle Scholar
  47. Liu, M., Xu, J., Krogh, P. H., Song, J., Wu, L., Luo, Y., & Ke, X. (2018). Assessment of toxicity of heavy metal-contaminated soils toward Collembola in the paddy fields supported by laboratory tests. Environmental Science and Pollution Research, 25, 16969–16978.CrossRefGoogle Scholar
  48. Lock, K., Janssens, F., & Janssen, C. R. (2003). Effects of metal contamination on the activity and diversity of springtails in an ancient Pb-Zn mining area at Plombieres, Belgium. European Journal of Soil Biology, 39, 25–29.CrossRefGoogle Scholar
  49. Lodenius, M., Josefsson, J., Heliovaara, K., Tulisalo, E., & Nummelin, M. (2009). Cadmium in insects after ash fertilization. Insect Sci., 16, 93–98.CrossRefGoogle Scholar
  50. Marrugo-Negrete, J., Pinedo-Hernandez, J., & Diez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinu River basin, Colombia. Environmental Research, 154, 380–388.CrossRefGoogle Scholar
  51. Meloun, M., & Militký, J. (2004). Statistical analysis of the experimental data. Academia, Praha. in Czech.Google Scholar
  52. Nahmani, J., & Rossi, J. P. (2003). Soil macroinvertebrates as indicators of pollution by heavy metals. Comptes Rendus Biologies, 326, 295–303.CrossRefGoogle Scholar
  53. Nuorteva, P., & Elberg, K. (1999). Levels of cadmium and some other metals in insects. In Proceedings of the XXIV Nordic congress of entomology (pp. 125–137).Google Scholar
  54. Osman, W., & Shonouda, M. (2017). X-ray metal assessment and ovarian ultrastructure alterations of the beetle, Blaps polycresta (Coleoptera, Tenebrionidae), inhabiting polluted soil. Environmental Science and Pollution Research, 24, 14867–14876.CrossRefGoogle Scholar
  55. Pedrini-Martha, V., Sager, M., Werner, R., & Dallinger, R. (2012). Patterns of urban mercury contamination detected by bioindication with terrestrial isopods. Archives of Environmental Contamination and Toxicology, 63, 209–219.CrossRefGoogle Scholar
  56. Pisanello, F., Marziali, L., Rosignoli, F., Poma, G., Roscioli, C., Pozzoni, F., & Guzzella, L. (2016). In situ bioavailability of DDT and hg in sediments of the Toce River (Lake Maggiore basin, northern Italy): Accumulation in benthic invertebrates and passive samplers. Environmental Science and Pollution Research, 23, 10542–10555.CrossRefGoogle Scholar
  57. Quevauviller, P., Ure, A., Muntau, H., & Griepink, B. (1993). Improvement of analytical measurements within the Bcr-program - single and sequential extraction procedures applied to soil and sediment analysis. International Journal of Environmental Chemistry, 51, 129–134.CrossRefGoogle Scholar
  58. Rabitsch, W. B. (1997). Seasonal metal accumulation patterns in the red wood ant Formica pratensis (Hymenoptera) at contaminated and reference sites. Journal of Applied Ecology, 34, 1455–1461.CrossRefGoogle Scholar
  59. Růžička, J. (2005). Icones insectorum europae centralis. Coleoptera: Agyrtidae, Silphidae. Folia Heyrovskyana Serie B, 3, 1–9.Google Scholar
  60. Salamun, P., Kucanova, E., Brazova, T., Miklisova, D., Renco, M., & Hanzelova, V. (2014). Diversity and food web structure of nematode communities under high soil salinity and alkaline pH. Ecotoxicology, 23, 1367–1376.CrossRefGoogle Scholar
  61. Salamun, P., Renco, M., Kucanova, E., Brazova, T., Papajova, I., Miklisova, D., & Hanzelova, V. (2012). Nematodes as bioindicators of soil degradation due to heavy metals. Ecotoxicology, 21, 2319–2330.CrossRefGoogle Scholar
  62. Shonouda, M., & Osman, W. (2018). Ultrastructural alterations in sperm formation of the beetle, Blaps polycresta (Coleoptera: Tenebrionidae) as a biomonitor of heavy metal soil pollution. Environmental Science and Pollution Research, 25, 7896–7906.CrossRefGoogle Scholar
  63. Scheifler, R., Gomot-de Vaufleury, A., Toussaint, M. L., & Badot, P. M. (2002). Transfer and effects of cadmium in an experimental food chain involving the snail Helix aspersa and the predatory carabid beetle Chrysocarabus splendens. Chemosphere, 48, 571–579.CrossRefGoogle Scholar
  64. Schipper, A. M., Wijnhoven, S., Leuven, R. S., Ragas, A. M., & Hendriks, A. J. (2008). Spatial distribution and internal metal concentrations of terrestrial arthropods in a moderately contaminated lowland floodplain along the Rhine River. Environmental Pollution, 151, 17–26.CrossRefGoogle Scholar
  65. Simon, E., Harangi, S., Baranyai, E., Braun, M., Fabian, I., Mizser, S., Nagy, L., & Tothmeresz, B. (2016). Distribution of toxic elements between biotic and abiotic components of terrestrial ecosystem along an urbanization gradient: Soil, leaf litter and ground beetles. Ecological Indicators, 60, 258–264.CrossRefGoogle Scholar
  66. Skalski, T., Kędzior, R., Kolbe, D., & Knutelski, S. (2015). Different responses of epigeic beetles to heavy metal contamination depending on functional traits at the family level. Baltic Journal of Coleopterology, 15, 81–90.Google Scholar
  67. Smetana, A., (1958). Fauna ČSR. Staphylinidae. I. ČSAV, Praha. 435 pp. (in Czech, German and Russian abstract).Google Scholar
  68. Smith, P., Cotrufo, M. F., Rumpel, C., Paustian, K., Kuikman, P. J., Elliott, J. A., McDowell, R., Griffiths, R. I., Asakawa, S., Bustamante, M., House, J. I., Sobocká, J., Harper, R., Pan, G., West, P. C., Gerber, J. S., Clark, J. M., Adhya, T., Scholes, R. J., & Scholes, M. C. (2015). Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. SOIL Discussions, 2, 537–586.CrossRefGoogle Scholar
  69. Sorvari, J., & Eeva, T. (2010). Pollution diminishes intra-specific aggressiveness between wood ant colonies. Science of the Total Environment, 408, 3189–3192.CrossRefGoogle Scholar
  70. Soto-Jimenez, M. F., & Olvera-Balderas, D. (2018). Geochemical fractionation and potential ecological risk of cadmium and Lead in soils impacted by secondary Lead refinery. Bulletin of Environmental Contamination and Toxicology, 101, 372–379.CrossRefGoogle Scholar
  71. Stary, P., & Kubiznakova, J. (1987). Content and transfer of heavy-metal air-pollutants in populations of Formica spp. wood ants (Hym, Formicidae). Journal of Applied Entomology, 104, 1–10.CrossRefGoogle Scholar
  72. Stone, D., Jepson, P., & Laskowski, R. (2002). Trends in detoxification enzymes and heavy metal accumulation in ground beetles (Coleoptera: Carabidae) inhabiting a gradient of pollution. Comparative Biochemistry and Physiology, 132, 105–112.Google Scholar
  73. Talarico, F., Brandmayr, P., Giulianini, P. G., Ietto, F., Naccarato, A., Perrotta, E., Tagarelli, A., & Giglio, A. (2014). Effects of metal pollution on survival and physiological responses in Carabus (Chaetocarabus) lefebvrei (Coleoptera, Carabidae). European Journal of Soil Biology, 61, 80–89.CrossRefGoogle Scholar
  74. van der Fels-Klerx, H. J., Camenzuli, L., van der Lee, M. K., & Oonincx, D. G. (2016). Uptake of cadmium, Lead and arsenic by Tenebrio molitor and Hermetia illucens from contaminated substrates. PLoS One, 11, e0166186.CrossRefGoogle Scholar
  75. Vanek, A., Boruvka, L., Drabek, O., Mihaljevic, M., & Komarek, M. (2005). Mobility of lead, zinc and cadmium in alluvial soils heavily polluted by smelting industry. Plant, Soil and Environment, 51, 316–321.CrossRefGoogle Scholar
  76. Vyslouzilova, M., Tlustos, P., Szakova, J., & Pavlikova, D. (2003). As, cd, Pb and Zn uptake by Salix spp. clones grown in soils enriched by high loads of these elements. Plant, Soil and Environment, 49, 191–196.CrossRefGoogle Scholar
  77. Weeks, J. M., Spurgeon, D. J., Svendsen, C., Hankard, P. K., Kammenga, J. E., Dallinger, R., Kohler, H. R., Simonsen, V., & Scott-Fordsmand, J. (2004). Critical analysis of soil invertebrate biomarkers: A field case study in Avonmouth. UK. Ecotoxicology, 13, 817–822.CrossRefGoogle Scholar
  78. Yang, K., Zhang, T., Shao, Y., Tian, C., Cattle, S. R., Zhu, Y., & Song, J. (2018). Fractionation, bioaccessibility, and risk assessment of heavy metals in the soil of an urban recreational area amended with composted sewage sludge. International Journal of Environmental Research and Public Health, 15, 613.CrossRefGoogle Scholar
  79. Zygmunt, P. M., Maryanski, M., & Laskowski, R. (2006). Body mass and caloric value of the ground beetle (Pterostichus oblongopunctatus) (Coleoptera, Carabidae) along a gradient of heavy metal pollution. Environmental Toxicology and Chemistry, 25, 2709–2714.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PraguePrague SuchdolCzech Republic
  2. 2.Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PraguePrague SuchdolCzech Republic

Personalised recommendations