Advertisement

Chromium toxicity mediated by application of chloride and sulfate ions in Vertisol of Central India

  • M. L. DotaniyaEmail author
  • J. K. Saha
  • S. Rajendiran
  • M. Vassanda Coumar
  • V. D. Meena
  • S. Kundu
  • A. K. Patra
Article
  • 40 Downloads

Abstract

Chromium (Cr) is one of the toxic metals adversely affecting organisms including humans in the ecosystems, and it is present in considerable concentration in the tannery industrial effluent. Toxicity expression of Cr is suspected to be influenced considerably by other accompanying ions present in the effluent used for irrigation. In a screen house experiment, interactive effects of chloride and sulfate ions in a Vertisol on uptake of Cr by spinach crop were investigated and treatments imposed were three levels each of Cr (0, 50, 100 mg kg−1), chloride (Cl) (0, 25, 50 mM kg−1), and sulfur (S) (0, 4, 8 mM kg−1) in possible combinations. Plant growth parameters and leaf Cr concentrations were recorded to find out the effect of anions on Cr dynamics in the plant. Increasing the concentration of Cl ions in soil reduced the Cr concentration in both root and shoot. Similarly, increasing the concentration of S from 4 to 8 mM kg−1 also reduced the concentration and uptake of Cr. Application of sulfate ions augmented the plant growth and counters the negative effect of Cl ions and Cr. Thus, the study revealed that the addition of S fertilizers could minimize the Cr toxicity in high Cr contaminated soils.

Keywords

Bioconcentration factors Chloride ions Chromium removal Plant growth Sulfate ions Translocation factor 

Notes

Acknowledgements

The authors are thankful to Dr. A Subba Rao, Ex-Director, ICAR-IISS, and Mrs. Seema Sahu, Mr. S K Rai, and supporting staff of the Division of Environmental Soil Science, ICAR-IISS, Bhopal, for the necessary help during the experiment. The authors are also thankful to Dr. Manoranjan Mohanty for language editing and Dr. H Das, ICAR-IISS, Bhopal, for statistical analysis. This study is a part of the project “Tannery constituent interaction effect on spinach” and funded by ICAR-Indian Institute of Soil Science, Bhopal (Grant No. IXX07989).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. AbouKassem, E., Sharafeldin, A., Rozema, J., & Foda, E. A. (1995). Synergistic effects of cadmium and NaCl on the growth, photosynthesis and ion content in wheat plants. Biologia Plantarum, 37, 241–249.Google Scholar
  2. Adesodun, J. K., Atayese, M. O., Agbaje, T. A., Osadiaye, B. A., Mafe, O. F., & Soretire, A. A. (2010). Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annus) for metals in soils contaminated with zinc and lead nitrates. Water, Air, & Soil Pollution, 207, 195–201.Google Scholar
  3. Ahmad, M. S. A., Javed, F., Javed, S., & Alvi, A. K. (2009). Relationship between callus growth and mineral nutrients uptake in salt-stressed Indica rice callus. Journal of Plant Nutrition, 32, 382–394.Google Scholar
  4. Ali, S., Cai, S., Zeng, F., Qiu, B., & Zhang, G. (2012). Effect of salinity and hexavalent chromium stresses on uptake and accumulation of mineral elements in barley genotypes differing in salt tolerance. Journal of Plant Nutrition, 35(6), 827–839.Google Scholar
  5. Bajwa, M. S. (2002). Soil salinity and alkalinity. In G. S. Sekhon, P. K. Chhonkar, D. K. Das, N. N. Goswami, G. Narayanasamy, S. R. Poonia, R. K. Rattan, & J. Sehgal (Eds.), Fundamental of soil science (pp. 291–307). New Delhi: Indian Soc Soil Sci.Google Scholar
  6. Banerjee, A., Naya, D., Chakrabortty, D., & Lahiri, S. (2008). Uptake studies of environmentally hazardous 51Cr in mungbeans. Environmental Pollution, 151, 423–427.Google Scholar
  7. Barcelo, J., Poschenrieder, C., & Gunse, J. (1985). Effects of chromium (VI) on mineral element composition of bush beans. Journal of Plant Nutrition, 8, 211–217.Google Scholar
  8. Bharti, V. S., Dotaniya, M. L., Shukla, S. P., & Yadav, V. K. (2017). Managing soil fertility through microbes: prospects, challenges and future strategies. In J. S. Singh & G. Seneviratne (Eds.), Agro-environmental sustainability (pp. 81–111). Singapore: Springer.Google Scholar
  9. Cary, E. E., Allaway, W. H., & Olson, O. E. (1977). Control of chromium concentrations in food plants. 1. Absorption and translocation of chromium by plants. Journal of Agricultural and Food Chemistry, 25, 300–304.Google Scholar
  10. Coumar, M. V., Parihar, R. S., Dwivedi, A. K., Saha, J. K., Rajendiran, S., Dotaniya, M. L., & Kundu, S. (2016a). Impact of pigeon pea biochar on cadmium mobility in soil and transfer rate to leafy vegetable spinach. Environmental Monitoring and Assessment, 188, 31.Google Scholar
  11. Coumar, M. V., Parihar, R. S., Dwivedi, A. K., Saha, J. K., Lakaria, B. L., Biswas, A. K., Rajendiran, S., Dotaniya, M. L., & Kundu, S. (2016b). Pigeon pea biochar as a soil amendment to repress copper mobility in soil and its uptake by spinach. BioResource, 11(1), 1585–1595.Google Scholar
  12. Dotaniya, M. L., & Pipalde, J. S. (2018). Soil enzymatic activities as influenced by lead and nickel concentrations in a Vertisol of Central India. Bulletin of Environmental Contamination and Toxicology, 101(3), 380–385.Google Scholar
  13. Dotaniya, M. L., Das, H., & Meena, V. D. (2014a). Assessment of chromium efficacy on germination, root elongation, and coleoptile growth of wheat (Triticum aestivum L.) at different growth periods. Environmental Monitoring and Assessment, 186, 2957–2963.Google Scholar
  14. Dotaniya, M. L., Meena, V. D., & Das, H. (2014b). Chromium toxicity on seed germination, root elongation and coleoptile growth of pigeon pea (Cajanus cajan). Legume Research, 37(2), 225–227.Google Scholar
  15. Dotaniya, M. L., Thakur, J. K., Meena, V. D., Jajoria, D. K., & Rathor, G. (2014c). Chromium pollution: a threat to environment. Agriculture Review, 35(2), 153–157.Google Scholar
  16. Dotaniya, M. L., Saha, J. K., Meena, V. D., Rajendiran, S., Coumar, M. V., Kundu, S., & Rao, A. S. (2014d). Impact of tannery effluent irrigation on heavy metal build- up in soil and ground water in Kanpur. Agrotechnology, 2(4), 77.Google Scholar
  17. Dotaniya, M. L., Meena, V. D., Rajendiran, S., Coumar, M. V., Saha, J. K., Kundu, S., & Patra, A. K. (2016a). Geo-accumulation indices of heavy metals in soil and groundwater of Kanpur, India under long term irrigation of tannery effluent. Bulletin of Environmental Contamination and Toxicology, 98(5), 706–711.Google Scholar
  18. Dotaniya, M. L., Rajendiran, S., Meena, V. D., Saha, J. K., Coumar, M. V., Kundu, S., & Patra, A. K. (2016b). Influence of chromium contamination on carbon mineralization and enzymatic activities in Vertisol. Agricultural Research, 6(1), 91–96.Google Scholar
  19. Dotaniya, M. L., Rajendiran, S., Coumar, M. V., Meena, V. D., Saha, J. K., Kundu, S., Kumar, A., & Patra, A. K. (2017). Interactive effect of cadmium and zinc on chromium uptake in spinach grown on Vertisol of Central India. International journal of Environmental Science and Technology, 15(2), 441–448.Google Scholar
  20. Dotaniya, M. L., Rajendiran, S., Meena, V. D., Coumar, M. V., Saha, J. K., Kundu, S., & Patra, A. K. (2018a). Impact of long-term application of sewage on soil and crop quality in Vertisols of Central India. Bulletin of Environmental Contamination and Toxicology, 101, 779–786.Google Scholar
  21. Dotaniya, M. L., Panwar, N. R., Meena, V. D., Dotaniya, C. K., Regar, K. L., Lata, M., & Saha, J. K. (2018b). Bioremediation of metal contaminated soils for sustainable crop production. In V. S. Meena (Ed.), Role of rhizospheric microbes in soil. India: Springer.Google Scholar
  22. Hefnawy, M. E., Selim, E. M., Assaad, F. F., & Ismail, A. I. (2014). The effect of chloride and sulfate ions on the adsorption of Cd2+ on clay and sandy loam Egyptian soils. The Scientific World Journal, 806252, 1–6.Google Scholar
  23. Huang, Y., Kang, W., Juan, Y., Fei, D., & Zhang, G. P. (2007). Interaction of salinity and cadmium stresses on mineral nutrients, sodium, and cadmium accumulation in four barley genotypes. Journal of Zhejiang University Science B, 8, 476–485.Google Scholar
  24. Izah, S. C., Inyang, I. R., Angaye, T. C. N., & Okowa, I. P. (2017). A review of heavy metal concentration and potential health implications of beverages consumed in Nigeria. Toxics, 5(1), 1–15.Google Scholar
  25. Kumar, P., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: the use of plants to remove heavy metals from soils. Environmental Science & Technology, 29, 1232–1238.Google Scholar
  26. Meers, E., Hopgood, M., Lesage, E., Vervaeke, P., Tack, F. M. G., & Verloo, M. (2004). Enhanced phytoextraction: in search for EDTA alternatives. International Journal of Phytoremediation, 6(2), 95–109.Google Scholar
  27. Orlovsky, N., Japakova, U., Zhang, H., & Volis, S. (2016). Effect of salinity on seed germination, growth and ion content in dimorphic seeds of Salicornia europaea L. (Chenopodiaceae). Plant Diversity, 38, 183–189.Google Scholar
  28. Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: hyperaccumulation metals in plants. Water, Air, & Soil Pollution, 184, 105–126.Google Scholar
  29. Pasricha, N. S., & Sarkar, A. K. (2002). Secondary nutrients. In G. S. Sekhon, P. K. Chhonkar, D. K. Das, N. N. Goswami, G. Narayanasamy, S. R. Poonia, R. K. Rattan, & J. Sehgal (Eds.), Fundamental of soil science (pp. 381–390). New Delhi: Indian Society of Soil Science.Google Scholar
  30. Pipalde, J. S., & Dotaniya, M. L. (2018). Interactive effects of lead and nickel contamination on nickel mobility dynamics in spinach. International Journal of Environmental Research, 12(5), 553–560.Google Scholar
  31. Rajendiran, S., Dotaniya, M. L., Coumar, M. V., Panwar, N. R., & Saha, J. K. (2015). Heavy metal polluted soils in India: status and countermeasures. JNKVV Research Journal, 49(3), 320–337.Google Scholar
  32. Ramana, S., Biswas, A. K., Ajay, Singh, A. B., & Ahirwar, N. K. (2012). Phytoremediation of chromium by tuberose. National Academy Science Letters, 35(2), 71–73.Google Scholar
  33. Rattan, R. K., & Goswami, N. N. (2002). Essential nutrients and their uptake by plants. In G. S. Sekhon, P. K. Chhonkar, D. K. Das, N. N. Goswami, G. Narayanasamy, S. R. Poonia, R. K. Rattan, & J. Sehgal (Eds.), Fundamental of soil science (pp. 308–332). New Delhi: Indian Society of Soil Science.Google Scholar
  34. Reich, M., Aghajanzadeh, T., Helm, J., Parmar, S., Hawkesford, M. J., & De Kok, L. J. (2017). Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa. Plant and Soil, 411(1), 319–332.Google Scholar
  35. Saha, J. K., Panwar, N., & Singh, M. V. (2010). Determination of lead and cadmium concentration limits in agricultural soil and municipal solid waste compost through an approach of zero tolerance to food contamination. Environmental Monitoring and Assessment, 168, 397–340.Google Scholar
  36. Saha, J. K., Panwar, N., & Coumar, M. V. (2013). Effect of methods of preparation on distribution of heavy metals in different size fractions of municipal solid waste composts. Environmental Monitoring and Assessment, 185, 8815–8821.Google Scholar
  37. Saha, J. K., Rajendiran, S., Coumar, M. V., Dotaniya, M. L., Kundu, S., & Patra, A. K. (2017). Soil pollution—an emerging threat to agriculture. Singapore: Springer.Google Scholar
  38. Singh, D., Chhonkar, P. K., & Dwivedi, B. S. (2005). Manual on soil, plant and water analysis. New Delhi: Westville.Google Scholar
  39. Singh, H. P., Mahajan, P., Kaur, S., Batish, D. R., & Kohli, R. K. (2013). Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 11, 229–254.Google Scholar
  40. Zayed, A., Lytle, C. M., Qian, J. H., & Terry, N. (1998). Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta, 206, 293–299.Google Scholar
  41. Zeng, F. R., Qiu, B. Y., Ali, S., & Zhang, G. P. (2009). Genotypic differences in nutrient uptake and accumulation in rice under chromium stress. Journal of Plant Nutrition, 33, 518–528.Google Scholar
  42. Zhuang, P., Yang, Q. W., Wang, H. B., & Shu, W. S. (2007). Phytoextraction of heavy metals by eight plant species in the field. Water, Air, & Soil Pollution, 184, 235–242.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ICAR-Indian Institute of Soil ScienceBhopalIndia

Personalised recommendations