Advertisement

Seasonal variation of nutrient salts and heavy metals in mangrove (Avicennia marina) environment, Red Sea, Egypt

  • Mamdouh S. Masoud
  • Ahmed M. Abdel-Halim
  • Ahmed A. El AshmawyEmail author
Article
  • 74 Downloads

Abstract

In the Egyptian Red Sea coast, nutrient salts, major ions, and heavy metals ion concentrations were examined in mangroves and the results were compared to respective concentrations in a reference area. Water samples were collected during the four seasons of 2012 from three different mangrove regions, Safaga, Abo Gheson, and El Quseer, besides, a mangrove free region, Marsa Alam. A temporal variation in the chemical composition of seawater of the mangrove and reference regions was recorded. Phosphorous and nitrogen forms were measured and calculated. Fe, Mn, Cu, Zn, Ni, Cr, Cd, and Pb ions were measured in water samples. Redfield nitrogen to phosphorous ratio explained the oligotrophic nature of the Red Sea. Ca and Mg ions besides total alkalinity showed negligible variations. The relatively greater concentration values of ammonium, 242.11 μg/l, dissolved inorganic nitrogen, 315.55 μg/l, and oxidizable organic matter, 0.4 mg-O2/l, may be caused by the impact of mangroves. Seawater contamination by heavy metals was assessed, using the metal index, in the mangrove regions which, compared to the reference region, were highly contaminated. Analysis of variance showed no significant variation among mangrove stations. Principal component analysis suggested that El Quseer and Safaga, mangrove regions, were contaminated by metal ions. Safaga possessed the highest concentration of Cd and Zn ions, while the highest concentrations of Mn, Cu, Ni, and Pb ions were observed at El Quseer. This may be attributed to industrial and shipping activities. It is concluded that the mangrove ecosystem along the Red Sea highly affects marine environment.

Keywords

Mangrove Oligotrophic Red Sea Marine pollution Metals 

Notes

Supplementary material

10661_2019_7543_MOESM1_ESM.docx (72 kb)
ESM 1 (DOCX 25 kb)

References

  1. Abd El-Wahab, M., Dar, M. A., & Mohammad, T. A. (2005). Sediments, coral reefs and seawater interactions in some coastal lagoons, Red Sea, Egypt. Egyptian Journal of Aquatic Research, 31, 69–85.Google Scholar
  2. Abo-El-Khair, E. M., Abdel-Halim, A. M., Fahmy, M. A., & Shreadah, M. A. (2011). Environmental conditions of the surface water of the Red Sea Egyptian coastal waters; during a decade of EIMP Project. Egyptian Journal of Aquatic Research, 37(1), 23–30.Google Scholar
  3. Abollino, O., Aceto, M., Gioia, C. L., Sarzanini, C., & Mentasti, E. (2001). Spatial and seasonal variations of major, minor and trace elements in Antarctic seawater. Chemometric investigation of variable and site correlations. Advances in Environmental Research, 6(1), 29–43.CrossRefGoogle Scholar
  4. Alongi, D. M. (1994). The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems. Hydrobiologia, 285, 19–32.CrossRefGoogle Scholar
  5. Alongi, D. M., Tirendi, F., & Clough, B. F. (2000). Below-ground decomposition of organic matter in forests of the mangrove Rhizophorastylosa and Avicennia marina along the arid coast of Western Australia. Aquatic Botany, 68(2), 97–122.CrossRefGoogle Scholar
  6. American Public Health Association (APHA). (1995). Standard method for the examination of water and wastewater (19th edn.). APHA: Washington, DCGoogle Scholar
  7. Beaumont, L. J., Pitman, A., Perkins, S., Zimmermann, N. E., Yoccoz, N. G., & Thuiller, W. (2011). Impacts of climate change on the world’s most exceptional ecoregions. Proceedings of the National Academy of Sciences USA, 108(6), 2306–2311.CrossRefGoogle Scholar
  8. Behzad, H., Ibarraa, M. A., Mineta, K., & Gojobori, T. (2016). Metagenomic studies of the Red Sea. Gene, 576(2), 717–723.CrossRefGoogle Scholar
  9. Bosire, J. O., Dahdouh-Guebas, F., Kairo, J. G., Kazungu, J., Dhairs, F., & Koedam, N. (2005). Litter degradation and CN dynamics in reforested mangrove plantation at Gazi Bay, Kenya. Biological Conservation, 126(2), 287–295.CrossRefGoogle Scholar
  10. Boutier, B., Chiffoleau, J. F., Auger, D., & Truquet, I. (1993). Influence of the Loire River on dissolved lead and cadmium concentrations in coastal waters of Brittany. Estuarine Coastal and Shelf Science, 36(2), 133–145.CrossRefGoogle Scholar
  11. Byrne, R. H., Kump, L. R., & Cantrell, K. J. (1988). The Influence of temperature and pH on trace metal speciation in seawater. Marine Chemistry, 25, 163–181.CrossRefGoogle Scholar
  12. Caerio, S., Costa, M. H., Ramos, T. B., Fernandes, F., Silveira, N., Coimbra, A., Medeiros, G., & Painho, M. (2005). Assessing heavy metal contamination in Sado Estuary sediment: an index analysis approach. Ecological Indicators, 5(2), 151–169.CrossRefGoogle Scholar
  13. Carlberg, S. R. (1972). New Baltic Manual. Cooperative Research Report (Series A, No. 29, pp. 1–145). Copenhagen: International Council for the Exploration of the Sea.Google Scholar
  14. Chaterjee, G., & Raziuddin, M. (2006). Status of water body in relation to some physico-chemical parameters in Asansol Town, West Bengal. Proceedings of Zoological Society of India, 5(2), 41–48.Google Scholar
  15. Chester, R. (2000). Marine geochemistry (2nd edn., pp. 493). Oxford: Block Well Science Ltd.Google Scholar
  16. Conley, D. J., Schelske, C. L., & Stoermer, E. F. (1993). Modification of the biogeochemical cycle of silica with eutrophication. Marine Ecology Progress Series, 101, 179–192.CrossRefGoogle Scholar
  17. Danielsson, ‘. A., Papush, L., & Rahm, L. (2008). Alterations in nutrient limitations scenarios of a changing Baltic Sea. Journal of Marine Systems, 73, 263–283.CrossRefGoogle Scholar
  18. Davis, J. C. (1986). Statistics and Data Analysis in Geology. New York: John Wiley & Sons. Inc.Google Scholar
  19. Devez, A., Achterberg, E., & Gledhill, M. (2009). Metal ion-binding properties of phytochelatins and related ligands. Metal Ions in Life Sciences, 5, 441–481.CrossRefGoogle Scholar
  20. Dittmar, T., & Lara, R. J. (2001). Driving forces behind nutrient and organic matter dynamics in a mangrove tidal creek in north Brazil. Estuarine, Coastal and Shelf Science, 52(2), 249–259.CrossRefGoogle Scholar
  21. Dvir, O., Rijn, J. V., & Neori, A. (1999). Nitrogen transformations and factors leading to nitrite accumulation in a hypertrophic marine fish culture system. Marine Ecology Progress Series, 199, 97–106.CrossRefGoogle Scholar
  22. El-Taher, A., Zakaly, H. M. H., & Elsaman, R. (2018). Environmental implications and spatial distribution of natural radionuclides and heavy metals in sediments from four harbours in the Egyptian Red Sea coast. Applied Radiation and Isotopes, 131, 13–22.CrossRefGoogle Scholar
  23. Fahmy, M. (2003). Water quality in the Red Sea coastal waters (Egypt): analysis of spatial and temporal variability. Chemistry and Ecology, 19(1), 67–77.CrossRefGoogle Scholar
  24. Fahmy, M. A., Abdel Fattah, L. M., Abdel-Halim, A. M., Aly-ldeen, M. A., Abo-El-Khair, E. M., Ahdy, H. H., Hemeill, A., Abu El-Soud, A., & Shreadah, M. A. (2016). Evaluation of the quality for the Egyptian Red Sea coastal waters during 2011-2013. Journal of Environmental Protection, 7, 1810–1834.CrossRefGoogle Scholar
  25. FAO. (2007). The world’s mangroves 1980–2005. A thematic study prepared in the framework of the Global Forest Resources Assessment 2005. FAO Forestry Paper 153. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  26. Feller, I. C., Lovelock, C. E., Berger, U., McKee, K. L., Joye, S. B., & Ball, M. C. (2010). Biocomplexity in mangrove ecosystems. Annual Review of Marine Science, 2, 395–417.CrossRefGoogle Scholar
  27. Ferreira, T. O., Otero, X. L., Vidal-Torrado, P., & Macías, F. (2007). Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate. Geoderma, 142, 36–46.CrossRefGoogle Scholar
  28. Frihy, O. E., Hassan, A. N., El Sayed, W. R., Iskander, M. M., & Sherif, M. Y. (2006). A review of methods for constructing coastal recreational facilities in Egypt (Red Sea). Ecological Engineering, 27(1), 1–12.CrossRefGoogle Scholar
  29. Galal, N. (1999). Studies on the Coastal Ecology and Management of the Nabq Protected Area, South Sinai, Egypt. Ph.D. Thesis, University of York, York, UK.Google Scholar
  30. Gao, Y., Oshita, K., Lee, K.-H., Oshima, M., & Motomizu, S. (2002). Development of column-pretreatment chelating resins for matrix elimination/multi-element determination by inductively coupled plasma-mass spectrometry. Analyst, 127, 1713–1719.CrossRefGoogle Scholar
  31. Giridharan, L., Venugopal, T., & Jayaprakash, M. (2007). Evaluation of the seasonal variation on the geochemical parameters and quality assessment of the groundwater in the proximity of River Cooum, Chennai, India. Environmental Monitoring and Assessment, 143, 161–178.CrossRefGoogle Scholar
  32. Grasshoff, K., Kremlingl, K., & Ehrhardt, M. (1999). Methods of seawater analysis (3rd edn.). Weinheim: WILEY-VCH.Google Scholar
  33. Grunwald, M., Dellwig, O., Kohlmeier, C., Kowalski, N., Beck, M., Badewien, T. H. A., Kotzur, S., Liebezeit, G., & Brumsack, H. J. (2010). Nutrient dynamics in a back barrier tidal basin of the Southern North Sea: time-series, model simulations, and budget estimates. Journal of Sea Research, 64(3), 199–212.CrossRefGoogle Scholar
  34. Guerguss, M. S., Shreadah, M. A., Fahmy, M. A., Abo-El-Khair, E. M., & Abdel-Halim, A. M. (2009). Assessment of water quality in the Red Sea using in situ measurements and remote sensing. Egyptian Journal of Aquatic Research, 35(2), 1–14.Google Scholar
  35. Harbison, P. (1986). Mangrove muds: a sink and a source for trace metals. Marine Pollution Bulletin, 17(6), 246–250.CrossRefGoogle Scholar
  36. Hartmann, M., Scholten, J. C., Stoffers, P., & Wehner, F. (1998). Hydrographic structure of brine-filled deeps in the Red Sea: new results from the Shaban, Kebrit, Atlantis II and Discovery deep. Marine Geology, 144(4), 311–330.CrossRefGoogle Scholar
  37. Jennings, R. R., Tackett, J. H., Wheeler, D. R., Berry, C. R., Canaday, J. T., & Arnold, E. R. (1970). The preliminary investigation of the water quality in the upper Roanoke River watershed (pp. 163). Report from the Technical Services Division of the Virginia State Water Control Board, Richmond.Google Scholar
  38. Johnson, K. S., Coale, K. H., Berelson, W. M., & Gordon, R. M. (1996). On the formation of the manganese maximum in the oxygen minimum. Geochimica et Cosmochimica Acta, 60(8), 1291–1299.CrossRefGoogle Scholar
  39. Kathiresan, K. (2000). Flora and Fauna in mangrove ecosystems: a manual for identification. All India coordinated project on coastal and marine biodiversity: training and capacity building on coastal biodiversity (east coast) (389 pp. 58). Parangipettai: Ministry of Environment and Forests, CAS in Marine Biology.Google Scholar
  40. Kathiresan, K., Rajendran, N., & Thangadurai, G. (1996). Growth of mangrove seedlings in intertidal area of Vellar estuary southeast coast of India. Indian Journal of Marine Sciences, 25, 240–243.Google Scholar
  41. Khalil, A. S. M. (2002). Monitoring program for Mangrove and intertidal biotopes in the Red Sea and Gulf of Aden. Jeddah: PRESGA.Google Scholar
  42. Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: a review. Aquatic Botany, 89(2), 128–137.CrossRefGoogle Scholar
  43. Lawson, E. O. (2011). Physico-chemical parameters and heavy metal contents of water from the mangrove swamps of Lagos Lagoon, Lagos, Nigeria. Advances in Biological Research, 5(1), 08–21.Google Scholar
  44. Mandura, A. S. (1997). A mangrove stand under sewage pollution stress : red Sea. Mangroves and Salt Marshes, 1, 255–262.CrossRefGoogle Scholar
  45. Marchand, C., Lallier-Vergès, E., & Baltzer, F. (2003). The composition of sedimentary organic matter in relation to the dynamic features of a mangrove-fringed coast in French Guiana. Estuarine, Coastal and Shelf Science, 56(1), 119–130.CrossRefGoogle Scholar
  46. Mclusky, D. S. (1989). The estuarine ecosystem (2nd ed.p. 214). New York: Chapman and Hall.CrossRefGoogle Scholar
  47. Mohamed, A. W. (2005). geochemistry and sedimentology of core sediments and the influence of human activities; Qusier, Safaga and Hurghada harbors, Red Sea Coast, Egypt. Egyptian Journal of Aquatic Research, 31, 93–103.Google Scholar
  48. Mohamed, M. A. E., Madkour, H. A., & El-Saman, M. I. (2011). Impact of anthropogenic activities and natural inputs on oceanographic characteristics of water and geochemistry of surface sediments in different sites along the Egyptian Red Sea Coast. African Journal of Environmental Science and Technology, 5(7), 494–511.Google Scholar
  49. Muller, F. L. L. (1996). Interactions of copper, lead and cadmium with the dissolved, colloidal and particulate components of estuarine and coastal waters. Marine Chemistry, 52, 245–268.CrossRefGoogle Scholar
  50. Nielsen, M. A., & Andersen, F. (2003). Phosphorous dynamics during decomposition of mangrove (Rizophora apiculata) leaves in sediments. Journal of Experimental Marine Biology and Ecology, 293, 73–88.CrossRefGoogle Scholar
  51. Pardo, R., Helenab, B. A., Cazurroa, C., Guerrab, C., Debana, L., Guerrab, C. M., & Vegaa, M. (2004). Application of two and three way principal component analysis to the interpretation of chemical fractionation results obtained by the use of the B.C.R. procedure. Analytica Chimica Acta, 523(1), 125–132.CrossRefGoogle Scholar
  52. PERSGA/GEF. (2004). Status of Mangroves in the Red Sea and Gulf of Aden.PERSGA Technical Series No. 11. Jeddah: PERSGA.Google Scholar
  53. Philippart, C. J. M., Cadée, G. C., van Raaphorst, W., & Riegman, R. (2000). Long-term phytoplankton–nutrient interactions in a shallow coastal sea: algal community structure, nutrient budgets, and denitrification potential. Limnology and Oceanography, 45(1), 131–144.CrossRefGoogle Scholar
  54. Price, A. R. G., Medely, P. A. H., McDowell, R. J., Dawson, S. A. R., Hogarth, P. J., & Ormond, R. F. G. (1987). Aspects of mangal ecology along the Red Sea coast of Saudi Arabia. Journal of Natural History, 21(2), 449–464.CrossRefGoogle Scholar
  55. Rasul, N. M. A., Stewart, I. C. F., & Nawab, Z. A. (2015). Introduction to the Red Sea: Its Origin, Structure, and Environment. In N. Rasul & I. Stewart (Eds.), The Red Sea. Springer Earth System Sciences. Berlin, Heidelberg: Springer.Google Scholar
  56. Reddy, M. S., Basha, S., Joshi, H. V., & Ramachandraiah, G. (2005). Seasonal distribution and contamination levels of total PHCs, PAHs and heavy metals in coastal waters of the AlangSosiya ship scrapping yard, Gulf of Cambay, India. Chemosphere, 61(11), 1587–1593.CrossRefGoogle Scholar
  57. Saravanakumar, A., Rajkumar, M., SeshSerebiah, J., & Thivakaran, G. A. (2008). Seasonal variations in physicochemical characteristics of water, sediment and soil texture in arid zone mangroves of Kachchh Gujarat. Journal of Environmental Biology, 29(5), 725–732.Google Scholar
  58. Schaetzl, R., & Anderson, S. (2005). Soil Genesis and Geomorphology. New York: Cambridge University Press.CrossRefGoogle Scholar
  59. Shanas, P. R., Aboobacker, V. M., Albarakati, A. M. A., & Zubier, K. M. (2017). Climate driven variability of wind-waves in the Red Sea. Ocean Modelling, 119, 105–117.CrossRefGoogle Scholar
  60. Shreadah, M. A., Masoud, M. S., Said, T. O., & El Zokm, G. (2008). Applications of IR, X-Ray, TGA And DTA to determine the mineral composition of the sediments and study of reaction kinetics along the Egyptian Red Sea coasts. Egyptian Journal of Aquatic Research, 34(4), 16–34.Google Scholar
  61. Silva, C. A. R., Lacerda, L. D., Silva, L. F. F., & Rezende, C. E. (1991). Forest structure and biomass distribution in a red mangrove stand, Sepetiba Bay, Rio de Janeiro. Revista Brasileira de Botânica, 14, 21–25.Google Scholar
  62. Smith, S. M., & Snedaker, S. C. (1995). Salinity responses in two populations of viviparous Rhizophora mangle L. seedlings. Biotropica, 27(4), 435–440.CrossRefGoogle Scholar
  63. Stanley, S. M. (2006). Influence of seawater chemistry on biomineralization throughout phanerozoic time: paleontological and experimental evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 214–236.CrossRefGoogle Scholar
  64. Stolte, W., McCollin, T., Noordeloos, A. A. M., & Riegman, R. (1994). Effect of nitrogen source on the size distribution within marine phytoplankton populations. Journal of Experimental Marine Biology and Ecology, 184(1), 83–97.CrossRefGoogle Scholar
  65. Tam, N. F. Y., & Wong, Y. S. (2000). Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environmental Pollution, 110(2), 195–205.CrossRefGoogle Scholar
  66. Tamasi, G., & Cini, R. (2004). Heavy metals in drinking waters from Mount Amiata (Tuscany, Italy). Possible risks from arsenic for public health in the Province of Siena. Science of the Total Environment, 327, 41–51.CrossRefGoogle Scholar
  67. Tett, P., Heaney, S. I., & Droop, M. R. (1985). The Redfield Ratio and phytoplankton growth rate. Journal of the Marine Biological Association of the United Kingdom, 65(2), 487–504.CrossRefGoogle Scholar
  68. Thiel, H., & Karbe, L. (1986). Risk assessment of mining metalliferous muds in the deep Red Sea. Ambio, 15, 34–41.Google Scholar
  69. Tse, P., Nip, T. H. M., & Wong, C. K. (2008). Nursery function of mangrove: a comparison with mudflat in terms of fish species composition and fish diet. Estuarine, Coastal and Shelf Science, 80(2), 235–242.CrossRefGoogle Scholar
  70. Uchiyama, Y., Nadaoka, K., Rolke, P., Adachi, K., & Yagi, H. (2000). Submarine groundwater discharge into the sea and associated nutrient\ transport in a sandy beach. Water Resources Research, 36(6), 1467–1479.CrossRefGoogle Scholar
  71. Vogelaar, J. C. T., Klapwijkm, A., Van Lierm, J. B., & Rulkens, W. H. (2000). Temperature effects on the oxygen transfer rate between 20 and 558c. Water Research, 34(3), 1037–1041.CrossRefGoogle Scholar
  72. Wilkei, M. L. (1995). Mangrove Conservation and Management in the Sudan. FAO Report. Rome: Ministry of Environment and Tourism, Khartoum and FAO.Google Scholar
  73. Wolanski, E., Mazda, Y., & Ridd, P. V. (1992). Mangrove hydrodynamics. In A. I. Robertson & D. M. Alongi (Eds.), Tropical Mangrove Ecosystems. Coastal and Estuarine Studies 41 (pp. 43–62). Washington, D.C: American Geophysical Union.CrossRefGoogle Scholar
  74. WQC (Water Quality Criteria). (1972). A report of the committee on water quality criteria (p. 593). Washington DC: NAS.Google Scholar
  75. Yee, D., Grieb, T., Mills, W., & Sedlak, M. (2007). Synthesis of long-term nickel monitoring in San Francisco Bay. Environmental Research, 105(1), 20–33.CrossRefGoogle Scholar
  76. Zhang, M., Yuan, D., Huang, Y., Chen, G., & Zhang, Z. (2010a). Sequential injection spectrophotometric determination of nanomolar nitrite in seawater by on-line preconcentrationwith HLB cartridge. Acta Oceanologica Sinica, 29(1), 100–107.CrossRefGoogle Scholar
  77. Zhang, Z., Tao, F., Du, J., Shi, P., Yu, D., Meng, Y., & Sun, Y. (2010b). Surface water quality and its control in a river with intensive human impactsea case study of the Xiangjiang River, China. Journal of Environmental Management, 91(12), 2483–2490.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  2. 2.Marine Chemistry LabNational Institute of Oceanography and FisheriesAlexandriaEgypt

Personalised recommendations