Advertisement

Evaluation of contaminants spreading from sludge piles, applying geochemical fractionation and attenuation of concentrations model in a tropical reservoir

  • Julio Cesar WassermanEmail author
  • Aline Mansur Almeida
  • Daniel Vidal Perez
  • Maria Angélica Wasserman
  • Wilson Machado
Article
  • 21 Downloads

Abstract

Drinking water production may generate significant amounts of sludge, which may be contaminated with various metals. For the first time, the mobility/lability of contaminants from two water treatment sludge piles in the Juturnaíba Reservoir was evaluated by applying two geochemical approaches: sequential extractions and attenuation of concentrations model. Both procedures were applied to evaluate the mobility/lability of Al, Cr, Cu, Fe, Mn, and Zn on samples collected in the sludge piles and in the neighborhood of both water treatment plants. The results show that aluminum presents considerably higher concentrations in the sediments close to the sludge piles, with more labile phases; however, the attenuation of concentrations model indicates little spreading of this contaminant in the reservoir. Manganese was shown to be severely depleted in the sludge, indicating that it can be leached away, due to the reducing conditions of the pile. The other elements showed low concentrations and were shown not to affect the concentrations in the reservoir. While the geochemical fractionation indicates the possibility of dissolution to the water column, the attenuation of concentrations model gives information on the spatial dispersion of the contaminants, constituting interesting complementary approaches.

Keywords

Drinking water treatment sludges Sediments Metals Attenuation of concentration model Sequential extraction Juturnaíba Reservoir Brazil 

Notes

Acknowledgements

The authors are grateful to Carlos Chagas Foundation for the Support to the Research in the State of Rio de Janeiro (FAPERJ) for the financial support through the program Pensa Rio (grant no. E-26/110.694/2012). JCW is also thankful to the Brazilian Council of Scientific and Technological Development (CNPq) for a research grant (grant no. 306714/2013-2). AMA thanks the CAPES for the financial support (grant no. 001). These financial supports did not imply any sort of bias in the results and their interpretation.

Supplementary material

10661_2019_7507_MOESM1_ESM.docx (17 kb)
Online Resource 1 (DOCX 17.3 kb)
10661_2019_7507_MOESM2_ESM.docx (15 kb)
Online Resource 2 (DOCX 15.2 kb)
10661_2019_7507_MOESM3_ESM.docx (30 kb)
Online Resource 3 (DOCX 30.3 kb)
10661_2019_7507_MOESM4_ESM.docx (122 kb)
Online Resource 4 (DOCX 121 kb)
10661_2019_7507_MOESM5_ESM.docx (148 kb)
Online Resource 5 (DOCX 148 kb)
10661_2019_7507_MOESM6_ESM.docx (77 kb)
Online Resource 6 (DOCX 77.1 kb)
10661_2019_7507_MOESM7_ESM.docx (169 kb)
Online Resource 7 (DOCX 169 kb)
10661_2019_7507_MOESM8_ESM.docx (158 kb)
Online Resource 8 (DOCX 157 kb)
10661_2019_7507_MOESM9_ESM.docx (145 kb)
Online Resource 9 (DOCX 144 kb)

References

  1. Achon, L. C., Barroso, M. M., & Cordeiro, J. S. (2013). Resíduos de estações de tratamento de água e a ISO 24512: desafio do saneamento brasileiro (Residues from water treatment plants ans ISO 24512: a challenge for the Brazilian sanitation). Engenh-Sanit Ambient, 18(2), 115–122.CrossRefGoogle Scholar
  2. Almeida, A. M., Wada, E. Y. B., & Wasserman, J. C. (2017). Volumetric modeling of two sludge piles from water treatment plants in a Brazilian reservoir. Water Science and Technology, 77(2), 355–363.  https://doi.org/10.2166/wst.2017.515.CrossRefGoogle Scholar
  3. Barcellos, R. G., Barros, S. R. d. S., Wasserman, J. C., Lima, G. B. A., & Chicayban, M. D. (2012). Availability of water resources from the São João River basin for a petrochemical complex of Rio de Janeiro, Brazil. In C. Bilibio, O. Hensel, & J. Selbach (Eds.), Sustainable water management in the tropics and sub-tropics and case studies in Brazil (Vol. 3, 1st ed., pp. 653–683). Jaguarão, RS, Brazil: FUFPampa; Unikassel; PGCult; UFMA.Google Scholar
  4. Bryant, C. L., Farmer, J. G., MacKenzie, A. B., BaileyWatts, A. E., & Kirika, A. (1997). Manganese behavior in the sediments of diverse Scottish freshwater lochs. Limnology and Oceanography, 42(5), 918–929.CrossRefGoogle Scholar
  5. Cordeiro, R. C., Machado, W., Santelli, R. E., Figueiredo, A. G., Seoane, J. C. S., Oliveira, E. P., Freire, A. S., Bidone, E. D., Monteiro, F. F., Silva, F. T., & Meniconi, M. F. G. (2015). Geochemical fractionation of metals and semimetals in surface sediments from tropical impacted estuary (Guanabara Bay, Brazil). Environmental Earth Sciences, 74(2), 1363–1378.  https://doi.org/10.1007/s12665-015-4127-y.CrossRefGoogle Scholar
  6. de Andrade, L. C., Coelho, F. F., Hassan, S. M., Morris, L. A., & Camargo, F. A. D. (2019). Sediment pollution in an urban water supply lake in southern Brazil. Environmental Monitoring and Assessment, 191(1), 12.  https://doi.org/10.1007/s10661-018-7132-2.CrossRefGoogle Scholar
  7. Dung, T. T. T., Cappuyns, V., Swennen, R., & Phung, N. K. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Environmental Science and Biotechnology, 12(4), 335–353.CrossRefGoogle Scholar
  8. Elkayam, R., Kraitzer, T., Popov, V. S., Sladkevich, S., & Lev, O. (2017). High performance of fixed-bed filtration for reagentless oxidative manganese removal. Journal of Environmental Engineering, 143(8), 8.  https://doi.org/10.1061/(asce)ee.1943-7870.0001234.CrossRefGoogle Scholar
  9. Fadigas, F. S., Sobrinho, N. M. B. A., Mazur, N., Anjos, L. H. C., & Freixo, A. A. (2006). Proposição de valores de referência para a concentração natural de metais pesados em solos brasileiros. Revista Brasileira de Engenharia Agrícola e Ambiental, 10, 699–705.CrossRefGoogle Scholar
  10. Farhat, H. I., & Aly, W. (2018). Effect of site on sedimentological characteristics and metal pollution in two semi-enclosed embayments of great freshwater reservoir: Lake Nasser, Egypt. Journal of African Earth Sciences, 141, 194–206.  https://doi.org/10.1016/j.jafrearsci.2018.02.012.CrossRefGoogle Scholar
  11. Giroussi, S. T., Voulgaropoulos, A. N., & Stavroulias, S. (1996). Voltammetric determination of heavy metals in aluminum sulfate used for potable and waste water treatment. Chemia Analityczna, 41(3), 489–493.Google Scholar
  12. Harikumar, P. S., Nasir, U. P., & Mujeebu Rahman, M. P. (2009). Distribution of heavy metals in the core sediments of a tropical wetland system. International Journal of Environmental Science and Technology, 6(2), 225–232.CrossRefGoogle Scholar
  13. He, Y., Men, B., Yang, X. F., Li, Y. X., Xu, H., & Wang, D. S. (2017). Investigation of heavy metals release from sediment with bioturbation/bioirrigation. Chemosphere, 184, 235–243.  https://doi.org/10.1016/j.chemosphere.2017.05.177.CrossRefGoogle Scholar
  14. IBGE - Instituto Brasileiro de Geografia e Estatística (2018). Síntese de indicadores sociais: uma análise das condições de vida da população brasileira: 2018 vol 39. Estudos e Pesquisas: Informação Demográfica e Socioeconômica. (pp 149). IBGE, Rio de Janeiro, Brazil.https://biblioteca.ibge.gov.br/visualizacao/livros/liv101629.pdf.
  15. Jain, P., Jang, Y. C., Tolaymat, T., Witwer, M., & Townsend, T. (2005). Recycling of water treatment plant sludge via land application: assessment of risk. Journal of Residuals Science & Technology, 2(1), 13–23.Google Scholar
  16. Khan, S., Kazi, T. G., Arain, M. B., Kolachi, N. F., Baig, J. A., Afridi, H. I., & Shah, A. Q. (2013). Evaluation of bioavailability and partitioning of aluminum in sediment samples of different ecosystems by modified sequential extraction methods. Clean-Soil Air Water, 41(8), 808–815.  https://doi.org/10.1002/clen.201000197.CrossRefGoogle Scholar
  17. Kim, K., Kim, B., Knorr, K. H., Eum, J., Choi, Y., Jung, S., & Peiffer, S. (2016). Potential effects of sediment processes on water quality of an artificial reservoir in the Asian monsoon region. Inland Waters, 6(3), 423–435.  https://doi.org/10.5268/iw-6.3.852.CrossRefGoogle Scholar
  18. Kluczka, J., Zolotajkin, M., Ciba, J., & Staron, M. (2017). Assessment of aluminum bioavailability in alum sludge for agricultural utilization. Environmental Monitoring and Assessment, 189(8), 8.  https://doi.org/10.1007/s10661-017-6133-x.CrossRefGoogle Scholar
  19. Kumar, B., Verma, V. K., Naskar, A. K., Sharma, C. S., & Mukherjee, D. P. (2014). Bioavailability of metals in soil and health risk assessment for populations near an Indian chromite mine area. Human and Ecological Risk Assessment, 20(4), 917–928.  https://doi.org/10.1080/10807039.2013.791589.CrossRefGoogle Scholar
  20. Lindsay, W. L., & Walthall, P. M. (1996). The solubility of aluminum in soils. In G. Sposito (Ed.), The environmental chemistry of aluminum (2nd ed., pp. 333–361). New York: Lewis.Google Scholar
  21. Marques, E. D., Silva, E. V., Souza, G. V. C., & Gomes, O. V. O. (2016). Seasonal variations of water quality in a highly populated drainage basin, SE Brazil: water chemistry assessment and geochemical modeling approaches. Environmental Earth Sciences, 75(24), 20.  https://doi.org/10.1007/s12665-016-6297-7.CrossRefGoogle Scholar
  22. McAlpin, J. G., Stich, T. A., Casey, W. H., & Britt, R. D. (2012). Comparison of cobalt and manganese in the chemistry of water oxidation. Coordination Chemistry Reviews, 256(21-22), 2445–2452.  https://doi.org/10.1016/j.ccr.2012.04.039.CrossRefGoogle Scholar
  23. Mester, Z., Cremisini, C., Ghiara, E., & Morabito, R. (1998). Comparison of two sequential extraction procedures for metal fractionation in sediment samples. Analytica Chimica Acta, 359(1-2), 133–142.CrossRefGoogle Scholar
  24. Meybeck, M., & Helmer, R. (1989). The ruality of rivers—from pristine stage to global pollution. Global and Planetary Change, 75(4), 283–309.  https://doi.org/10.1016/0921-8181(89)90007-6.CrossRefGoogle Scholar
  25. Ministério Público - Minas Gerais (Public Prosecutor - MG) (2009). Informações técnicas referentes aos danos ambientais decorrentes do lançamento de lodo in natura, pelas Estações de Tratamento de Água, no ambiente - Parecer Técnico (Technical informations concerning the environmental impacts from the disposal of untreated sludges from water treatment plants—technical advice). (pp. 32). Belo Horizonte: Ministério Público do Estado de Minas Gerais, Belo Horizonte. Circular Letter: 1139/2008Google Scholar
  26. Reed, B. J. (2005). Minimum water quantity needed for domestic uses. In R. A. Reed (Ed.), WHO/SEARO technical noter for emergencies (Vol. 9, p. 4). Leicestershire, UK: World Health Organization - Regional Office for South-East Asia.Google Scholar
  27. Ribeiro, A. P., Figueiredo, A. M. G., dos Santos, J. O., Dantas, E., Cotrim, M. E. B., Figueira, R. C. L., et al. (2013). Combined SEM/AVS and attenuation of concentration models for the assessment of bioavailability and mobility of metals in sediments of Sepetiba Bay (SE Brazil). Marine Pollution Bulletin, 68(1-2), 55–63.  https://doi.org/10.1016/j.marpolbul.2012.12.023.CrossRefGoogle Scholar
  28. Saleem, M., Iqbal, J., Akhter, G., & Shah, M. H. (2018). Fractionation, bioavailability, contamination and environmental risk of heavy metals in the sediments from a freshwater reservoir, Pakistan. Journal of Geochemical Exploration, 184 (Part A, 199–208.  https://doi.org/10.1016/j.gexplo.2017.11.002.CrossRefGoogle Scholar
  29. Souza, V. A., & Wasserman, J. C. (2015). Distribution of heavy metals in sediments of a tropical reservoir in Brazil: Sources and fate. Journal of South American Earth Sciences, 63, 208–216.  https://doi.org/10.1016/j.jsames.2015.07.014.CrossRefGoogle Scholar
  30. Sposito, G. (1996). The environmental chemistry of aluminum (2nd ed.). New York: Lewis.Google Scholar
  31. Stumm, W., & Morgan, J. J. (1981). Aquatic Chemistry: an introduction emphasizing chemical equilibria in natural waters (2nd ed.). New York: John Wiley & Sons-Wiley Insterscience.Google Scholar
  32. Taverniers, I., De Loose, M., & Van Bockstaele, E. (2004). Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. TrAC Trends in Analytical Chemistry, 23(8), 535–552.  https://doi.org/10.1016/j.trac.2004.04.001.CrossRefGoogle Scholar
  33. Tocaia dos Reis, E. L., Barbosa Cotrim, M. E., Rodrigues, C., Faustino Pires, M. A., Beltrame, O., Rocha, S. M., et al. (2007). Identification of the influence of sludge discharges from water treatment plants. Quimica Nova, 30(4), 865–872.CrossRefGoogle Scholar
  34. Turner, A., & Olsen, Y. S. (2000). Chemical versus enzymatic digestion of contaminated estuarine sediment: relative importance of iron and manganese oxides in controlling trace metal bioavailability. Estuarine Coastal and Shelf Science, 51(6), 717–728.  https://doi.org/10.1006/ecss.2000.0725.CrossRefGoogle Scholar
  35. US EPA. (2007). Method 3051A. Microwave assisted acid digestion of sediments, sludges, soils and oils. SW-846 (Vol. 3051A, p. 30). Washington, DC: United States Environmental Protection Agency.Google Scholar
  36. Wada, E. Y. B. (2017). Aplicação da modelagem hidrodinâmica na represa de Juturnaíba considerando os aportes de nutrientes dos seus afluentes (Application of hyderodynamic modeling to the Juturnaíba Reservoir, considering nutrient inputs from affluents). Niterói, Brazil: Environmental Engineering Monography, University Federal Fluminense.Google Scholar
  37. Wasserman, J. C., de Oliveira Silva, L., de Pontes, G. C., & de Paiva Lima, E. (2018). Mercury contamination in the sludge of drinking water treatment plants dumping into a reservoir in Rio de Janeiro, Brazil. Environmental Science and Pollution Research, 25(28), 28713–28724.  https://doi.org/10.1007/s11356-018-2899-9.CrossRefGoogle Scholar
  38. Wasserman, J. C., & Queiroz, E. L. (2004). The attenuation of concentrations model: a new method for assessing mercury mobility in sediments. Quimica Nova, 27(1), 17–21.CrossRefGoogle Scholar
  39. World Health Organization (2017). Drinking-water - Key Facts. Resource Document. WHO.http://www.who.int/mediacentre/factsheets/fs391/en/. Accessed 23 Oct 2017.
  40. Wu, L., Liu, G. J., Zhou, C. C., Liu, R. Q., Xi, S. S., Da, C. N., et al. (2018). Spatial distributions, fractionation characteristics, and ecological risk assessment of trace elements in sediments of Chaohu Lake, a large eutrophic freshwater lake in eastern China. Environmental Science and Pollution Research, 25(1), 588–600.  https://doi.org/10.1007/s11356-017-0462-8.CrossRefGoogle Scholar
  41. Zhu, M. X., Huang, X. L., Yang, G. P., & Chen, L. J. (2015). Iron geochemistry in surface sediments of a temperate semi-enclosed bay, North China. Estuarine Coastal and Shelf Science, 165, 25–35.  https://doi.org/10.1016/j.ecss.2015.08.018.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Post-Graduation Program in Geochemistry, Network of Environment and Sustainable Development, Instituto de GeociênciasFederal Fluminense UniversityNiteróiBrazil
  2. 2.Post-Graduation Program in Geochemistry, Instituto de QuímicaFederal Fluminense UniversityNiteróiBrazil
  3. 3.Embrapa SolosRio de JaneiroBrazil
  4. 4.Institute of Nuclear Engineering (IEN/CNEN)Cidade UniversitáriaRio de JaneiroBrazil

Personalised recommendations