Marine biodiversity patterns off Alexandria area, southeastern Mediterranean Sea, Egypt

  • Mahmoud M. S. FarragEmail author
  • Hussein A. El-Naggar
  • Mohamed M. A. Abou-Mahmoud
  • Ahmed N. Alabssawy
  • Hamdy O. Ahmed
  • Hamdy A. Abo-Taleb
  • Kapiris Kostas


The biological marine system in the Mediterranean Sea off Alexandria, Egypt, was investigated to recognise its biodiversity and the relations among “ichthyofauna, invertebrates, and benthic” cover including biota and flora, as well as seabed bathymetry during 2017 using a multi-seasonal surveys by the commercial bottom trawler. Moreover, zooplanktonic community from the water column was also collected to support the picture of the biodiversity in the investigated area. The identified species were 94 fishes, 64 invertebrates, 6 benthic flora, and 304 zooplanktonic species. The ichthyofauna included 5 Chondrichthyes species (5.3% of the fish species), while Osteichthyes fishes were 89 species (94.7%) belonging to 48 families and 72 genera. The most abundant family was Sparidae (13 species). The highest abundance of fishes occurred in the summer (68 fish species 72.34%), while the lowest abundance occurred in the spring (49 species, 52.13%). Regarding the demersal and benthic biota, the most abundant phylum was Mollusca (31 species) and represented by three classes (Bivalvia, Cephalopoda, and Gastropoda). Gastropoda was the most abundant class (18 species), while the lowest Phyla was Chordata (1 species of Ascidians) and Annelida (1 species). The number of lessepsian fish species were 17 (18.1%) of the total number of species caught by the bottom trawl net. In addition, this work provided new records Aulopareia unicolor (F): Gobiidae) for the area for first time and considered the second time in Egypt. The benthic flora was represented by 6 species belonging to three phyla (Tracheophyta, Chlorophyta, and Rhodophyta). Sea grasses were represented by three species (Posidonia oceanica, Cymodocea nodosa, and Halophila stipulacea). The highest abundance of benthic species occurred in the summer (53 species with 75.7%), while the lowest one was in autumn (27 species, 38.6%). Geologically, the fishing ground constituted of hard rocks to very fine silt. The eastern part of the study area includes terrigenous Nile sediment origin, while the western side has biocalcareous sediment with shell fragments richness, coastal limestone ridges origin. The continental shelf, which runs along the study area, is portrayed by a 200-m contour line. In the water column, zooplanktonic community was represented by 304 taxa, belonging to 12 phyla, 6 phyla (Arthropoda, Tintinnida, Chordata “fish eggs and larvae”, Cnidaria, Foraminifera, and Radiozoa) were dominant. Copepods were the dominant group (71.59%); its annual average abundance was 1271 ind./m3. Its most diversified season was the winter (175 No/m3.) and its average abundance was 1892.9 ind./m3. However, in spring, 118 species were recorded presenting the highest average abundance (2419.4 ind./m3). The lowest diversified season was summer (85 organisms) with density of 1150 ind./m3. The present work offers updated data regarding the marine biodiversity in Egypt, enriches the gaps in the bibliography in the Eastern Mediterranean, and gives preliminary list of species and biodiversity of bottom trawl combined with the interaction with other biosystems and features of fishing ground. These data could be used to monitor evaluate the impact of bottom trawl on the fisheries habitats and changing in ecosystems. Also, it could be used as constructive step to manage or protect such area in combination with other. It is recommended to fulfil the need for more and detailed studies in all areas by different gears to cover the gaps in marine biodiversity data.


Biodiversity Bottom trawl Continental slope Zooplankton Eastern Mediterranean Egypt 



  1. Abdel Aziz, N. E., & Aboul-Ezz, S. M. (2003). Zooplankton community of the Egyptian Mediterranean coast. Egyptian Journal Aquatic Biology and Fisheries, 7(4), 91–10.CrossRefGoogle Scholar
  2. Abdel-Aziz, N. E. (2002). Impact of water circulation and discharge wastes on zooplankton dynamics in the Western harbour of Alexandria. Egyptian Journal Aquatic Biology and Fisheries, 6(1), 1–21.CrossRefGoogle Scholar
  3. Abo-Taleb, H. A., El Raey, M., Abou Zaid, M. M., Aboul Ezz, S. M., & Abdel-Aziz, N. E. (2015). Study of the physico-chemical conditions and evaluation of the changes in eutrophication related problems in El- Mex Bay. African Journal of Environmental Science and Technology, 4, 354–364.Google Scholar
  4. Abo-Taleb, H. A., Aboul Ezz, S. M., Abdel Aziz, N. E., Abou Zaid, M. M., & El Raey, M. (2016a). Detecting marine environmental pollution by biological beacons and GIS program. Journal of Fisheries, 10(4), 069–083.Google Scholar
  5. Abo-Taleb, H. A., Abdel Aziz, N. E., Aboul Ezz, S. M., El Raey, M., & Abou Zaid, M. M. (2016b). Study of chromista and protozoa in a hotspot area at the Mediterranean coast with special reference to the potentiality to use it as bio-indicators. International Journal of Marine Science, 6(53), 1–17.Google Scholar
  6. Abou Zaid M.M., El Raey M., Aboul Ezz S.M., Abdel-Aziz N.E. and Abo-Taleb H.A. (2014). Diversity of Copepoda in a Stressed Eutrophic Bay (El-Mex Bay) Alexandria, Egypt, Egyptian Journal of Aquatic  Research., 40, 143-162.Google Scholar
  7. Aboul-Ezz, S. M. (1994). Disetribution of zooplankton communities in the swash zone along the Mediterranean Coast of Port-Said (Egypt). Bulletin of National Institute of Oceanogrphy and Fisheries. A.R.E., 20(1), 99–128.Google Scholar
  8. Akel, E. H. K. (2009). Fisheries of experimental purse seine net using light and population dynamics of Sardinella aurita (Family Clupeidae) east of Alexandria, Egypt. Egyptian Journal Aquatic Biology and Fisheries, 13(1), 55–77.CrossRefGoogle Scholar
  9. Akel, E. H. K., & Allam, S. M. (2016). Marine Bottom trawl exploration along the Egyptian Mediterranean waters during 2008–2009. Advances in Biology, Biotechnology and Genetics, 03(03), 01–12.Google Scholar
  10. Akel, E. H. K., & Karachle, P. K. (2017). The marine ichthyofauna of Egypt. Egyptian Journal of Aquatic Biology & Fisheries., 21(3), 81–116.CrossRefGoogle Scholar
  11. Akel, E. K., & Philips, A. E. (2014). Fisheries and biodiversity of the beach seine catch from the Eastern Harbor, Alexandria, Egypt. Egyptian Journal of Aquatic Research, 40(1), 79–91.CrossRefGoogle Scholar
  12. Allam, S.M. (1989). Revision of the order Hypotremata along the Mediterranean coast off Alexandria with special reference to the family Dasyatidae. Ph. D. Thesis. Faculty of Science, Alexandria University, Alexandria, Egypt.Google Scholar
  13. Bianchi, C. N. & Morri, C. (2010). Marine Biodiversity of the Mediterranean Sea: Situation, Problems and Prospects for Future Research: Marine Pollution Bulletin [Mar. Pollut. Bull.], 40, 5, 367-376.Google Scholar
  14. Boltovskoy, D. (Ed.). (1999). South Atlantic Zooplankton. Vols. 1 & 2. Leiden: Backhuys Publishers 1706 pp.Google Scholar
  15. Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Ben Rais Lasram, F., et al. (2010). The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One, 5(8), e11842. Scholar
  16. Conway, D. V. P., White, R. G., Hugues-Dit-Ciles, J., Gallienne, C. P., & Robins, D. B. (2003). Guide to the coastal and surface zooplankton of the south-western Indian Ocean. Plymouth: occasional publication of the Marine Biological Association of the United Kingdom 367 pp.Google Scholar
  17. Daly-Yahia, N. M., Souissi, S., & Yahia-Ke’fi O.D. (2004). Spatial and temporal structure of planktonic copepods in the bay of Tunis (southwestern Mediterranean Sea). Zoological Studies, 43(2), 366–375.Google Scholar
  18. Dowidar, N. M., & El-Maghraby, A. M. (1973). Notes on the occurrence and distribution of some zooplankton species in the Mediterranean waters of UAR. Rapports Comm. Int. Mer. Mediterran., 21(8), 521–525.Google Scholar
  19. Dowidar, N. M., Khalil, A. N., El-Maghraby, A. M., & El-Zawawy, D. A. (1983). Zooplankton composition of the eastern harbour of Alexandria, Egypt. Rapports Comm. Int. Mer. Mediterran., 28(9), 195–196.Google Scholar
  20. Egypt Second National Communication Report. (2010). United Nations Framework Convention on Climate Change. Egyptian Environmental Affairs Agency (EEAA).Google Scholar
  21. El-Deeb, R. S. (2018). Biological and ecological studies on some mussel species (Bivalvia: Mollusca) from Mediterranean Sea, Alexandria, Egypt. M.Sc. Thesis, Faculty of Science, Damanhour University, 92 pp.Google Scholar
  22. El-Haweet, A., Fishar, M. R., Geneid, Y., & Abdel-Moula, E. (2011). Assessment of fisheries and marine biodiversity of Sallum Gulf, Egypt. International Journal of Environmental Science and Engineering, 1, 21–34.Google Scholar
  23. Elmasry, E., Omar, H. A., Abdel Razek, F. A., & El-Magd, M. A. (2013). Preliminary studies on habitat and diversity of some sea urchin species (Echinodermata: Echinoidea) on the southern Levantine basin of Egypt. Egyptian Journal of Aquatic Research, 39, 303–311.CrossRefGoogle Scholar
  24. Elsaeed, G. H., Aziz, M. S., & Ziada, W. M. (2016). Sedimentation analysis and prediction for Aswan high dam reservoir. Journal of Scientific and Engineering Research, 3(4), 302–312 ISSN: 2394-2630.Google Scholar
  25. El-Sayed, R. S.  (1994). Check-list of Egyptian Mediterranean fishes, Egypt. Bulletin of National Institute of Oceanography & Fisheries, 77 + IX pp.El-Wakeel, S. K., & El-Sayed, M. K. (1978). The texture, mineralogy and chemistry of bottom sediments and beach sands from the Alexandria Region. Egyptian Journal of Marine Geology, 27(1–2), 137–160.
  26. FAO (2006). Species Catalogues FAO Fisheries Synopsis 125, 1–18.Google Scholar
  27. FAO (2006). Food and Agriculture Organization of the United Nations. Species Catalogues FAO Fisheries Synopsis 125, 1 -18.Farrag, E.F.E. (2008). Population dynamics and management of some sparid fish species in Abu Qir-Bay. M.Sc. Thesis, Faculty Science, Al-Azhar University, Egypt. Google Scholar
  28. Farrag, M.M.S. (2014). Fisheries and Biological studies on Lessepsian pufferfish, Lagocephalus sceleratus (Gmelin, 1789) (Family: Tetraodontidae) in the Egyptian Mediterranean waters. Ph.D Thesis, Faculty of science, Al-Azhar University, (Assuit), Egypt.Google Scholar
  29. Farrag, M. M. S. (2016). Deep-sea ichthyofauna from eastern Mediterranean, Egypt:update and new records. Egyptian Journal of Aquatic Research, 42, 479–489.CrossRefGoogle Scholar
  30. Farrag, M. M. S., Osman, A. G. O., Akel, E. H. K., & Moustafa, M. A. (2014). Catch and effort of night purse seine with emphasize to age and growth of lessepsian Etrumeus teres (Dekay, 1842), Mediterranean Sea, Egypt. Egyptian Journal of Aquatic Research, 40, 181–190. Scholar
  31. Farrag, M. M. S., El-Haweet, A. A. K., Akel, E. K. A., & Moustafa, M. A. (2015). Stock status of puffer fish Lagocephalus sceleratus (Gmelin, 1789) along the Egyptian coast, eastern Mediterranean Sea. American Journal of Life Sciences. Special Issue: New Horizons in Basic and Applied Zoological Research, 3(6–1), 83–93. Scholar
  32. Farrag, M. M. S., El-Haweet, A. A. K., Akel, E. K. A., & Moustafa, M. A. (2016a). Occurrence of puffer fishes (Tetraodontidae) in the eastern Mediterranean, Egyptian coast - filling in the gap. BioInvasions Records, 5(1), 47–54. Scholar
  33. Farrag, M. M. S., Jawad, L. A., & El-Haweet, A. A. K. (2016b). Occurrence of the arrow Bulleye Priacanthus sagittarius (Teleostei: Priacanthidae) in the Egyptian coasts of the Mediterranean Sea. Marine Biodiversity Records, 9, 1–6.CrossRefGoogle Scholar
  34. Farrag, M. M. S., Ahmed, H. O., TouTou, M. M. M., & Eissawi, M. M. (2019). Marine mammals in the Egyptian Mediterranean Coast “Records and Vulnerability”. International Journal of Ecotoxicology and Ecobiology, 4(1), 8–16.CrossRefGoogle Scholar
  35. Fischer, W., Bauchot, M.-L., & Schneider, M. (1987). (rédac- 1987 teurs), Fiches FAO d’identification des espèces pour les besoins de la pêche. (Révision 1). Méditerranée et mer Noire. Zone de pêche 37. Volume I. Végétaux et Invertébrés (p. 1). Rome: FAO, Publication préparée par la FAO, résultat d’un accord entre la FAO et al. Commission des Communautés Européennes (Projet GCP/INT/422/EEC) financée conjointement par ces deux organisations 760 p.Google Scholar
  36. Folk, R. L. (1974). Petrology and sedimentary rocks (p. 170). Austin: Hemphill. Co.Google Scholar
  37. Froese, R., D. Pauly, eds. (2018). FishBase. Upeneus asymmetricus Lachner, 1954. Accessed through: World Register of Marine Species at: on 2018-02-12.
  38. Halim, Y., & Rizkalla, S. (2011). Aliens in Egyptian Mediterranean waters. A check-list of Erythrean fish with new records. Mediterranean Marine Science, 12, 479–490. Scholar
  39. Hamouda, A. Z., El-Saharty, A., & Abou-Mahmoud, M. M. (2014). Comparative study between seabed characteristics of the Western and Eastern Harbors, Alexandria, Egypt. Journal of King Abdulaziz University, Marine Science, 25(1), 79–103.
  40. Hamza, W., Ennet, P., Tamsalu, R., & Zalesny, V. (2003). The 3D physical-biological model study in the Egyptian Mediterranean coastal sea. Aquatic Ecology, 37, 307–324.CrossRefGoogle Scholar
  41. Hays, G. C., Richardson, A. J., & Robinson, C. (2005). Climate change and marine plankton. Trends in Ecology & Evolution, 20, 337–344.CrossRefGoogle Scholar
  42. Heaps, N. S. (1980). A mechanism for local upwelling along the European continental slope. Journal of Oceanologica Acta, 3(4).Google Scholar
  43. Heneash, A. M. (2015). Zooplankton composition and distribution in a stressed environment (El Dekhaila harbour), south-eastern Mediterranean Sea, Egypt. International Journal of Advanced Reseach in Biological Sciences, 2(11), 39–51.Google Scholar
  44. Heaps, N.S. (1980). A mechanism for Local Upwelling along the European Continental Slope. Journal of Oceanologica Acta, 3, 449-454.Google Scholar
  45. Hu, J., & Wang, X. H. (2016). Progress on upwelling studies in the China seas. J. Rev. Geophys., 54, 653–673.
  46. Ibrahim, M. A., & Soliman, I. A. (1996). Check-list of the bony fish species in the Egyptian waters of Egypt. Bulletin of Natlonal Institute of Oceanography and Fisheries, A.R.E., 22, 43–57.Google Scholar
  47. Ibrahim, M.A., Hasan, M.W.A., El-Far, A.M.M., Farrag, E.F.E and Farrag, M.M.S.  (2011). Deep Sea Shrimp resources in the South Eastern Mediterranean Waters of Egypt. Egypt. Egyptian Journal of Aquatic Research, 37, 2, 131–137.Google Scholar
  48. Irogoien, X., Huisman, J., & Harris, R. (2004). Global biodiversity patterns of marine phytoplankton and zooplankton. Nature, 429, 863–867.Google Scholar
  49. Lipej, L., Acevedo, I., Akel, E. H. K., Anastasopoulou, A., Angelidis, A., Azzurro, E., Castriota, L., Çelik, M., Cilenti, L., et al. (2017). New Mediterranean biodiversity records (March 2017). Mediterranean Marine Science, 18(1), 179–201.CrossRefGoogle Scholar
  50. Margalef, R. (1968). Perspectives in ecological theory. Chicago: Univ. of Chicago Press 111pp.Google Scholar
  51. Marshall, S. M. (1969). Protozoa, order Tintinnia. Fiches d’indentification de Zooplancton (pp. 117–127). Copenhagen: Conseil Internat. pour l’Exploration de la Mer.Google Scholar
  52. Millot, C., & Taupier-Letage, I. (2005). Circulation in the Mediterranean Sea. The Mediterranean Sea in Handbook of Environmental Chemistry (pp. 29–66). Berlin, ISBN: 978-3-540-25018-0, 5k: Springer.Google Scholar
  53. Moussa, M. R. (2009). Studies on reproductive biology of Holothuria arenicola (Echinodermata Holothuroidea) in the Egyptian Mediterranean coast. PhD thesis, Fac. Sci., Alexandria University, 213pp.Google Scholar
  54. Mytilineou, C., Akel, E., Babali, N., Balistreri, P., Bariche, M., Boyaci, Y., Cilenti, L., Constantinou, C., & Zenetos. (2016). New Mediterranean biodiversity records (November, 2016). Mediterranean Marine Science, 17(3), 794–821.CrossRefGoogle Scholar
  55. NIOF. (2008). Demersal fisheries survey along the Egyptian Mediterranean waters. A-West (Alexandria-El Sallum), B-East (Alexandria- El Arish) carried out by “R/V salsabil” during summer (From 15th to 20th August 2008 and from 23th to 30th August 2008). Egypt: Report of fishery biology lab, National Institute of Oceanography and Fisheries (NIOF).Google Scholar
  56. NIOF. (2009). Demersal fisheries survey along the western and eastern Egyptian Mediterranean waters. A-West (Alexandria-El Sallum), B-East (Alexandria-El Arish) carried out by “R/V salsabil” during winter (From 5th to 12th March 2009 and from 17th to 21st March 2009). Egypt: Report of fishery biology lab, National Institute of Oceanography and Fisheries (NIOF).Google Scholar
  57. Nour El-Din, N. M. (1987). Ecology and distribution of pelagic copepods in the Mediterranean waters of Egypt. M.Sc. Thesis. Faculty of Science, Alexandria University. Google Scholar
  58. Olenin, S., Alemany, F., Cardoso, A. C., Gollasch, S., Goulletquer, P., Lehtiniemi, M., McCollin, T. et al (2010). Marine Strategy Framework Directive – Task Group 2 Report. Non-indigenous species, Office for Official Publications of the European Communities, Luxembourg, EUR 24342 EN, Scholar
  59. Pais, A., Serra, S., Meloni, G., Saba, S., & Ceccherelli, G. (2012). Harvesting effects on paracentrotus lividus population structure: a case study from northwestern Sardinia, Italy before and after the fishing season. Journal of Coastal Research, 28, 570–575.Google Scholar
  60. Peet, R. K. (1974). The measurement of species diversity. Annual Review of Ecology and Systematics, 5, 285–307.CrossRefGoogle Scholar
  61. Pielou, E. C. (1966). The measurements of diversity in different types of biological collection. Journal of Theoretical Biology, 13, 131–144.CrossRefGoogle Scholar
  62. Pielou, E. C. (1977). Mathmatical ecology. New York: John Wiley and sons.Google Scholar
  63. Ramadan, S. E., Kheirallah, A. M., & Abdel-Salam, K. M. (2006). Marine fouling community in the Eastern harbour of Alexandria, Egypt compared with four decades of previous studies. Mediterranean Marine Science, 7(2), 19–29.CrossRefGoogle Scholar
  64. Rizkalla, S. I., Akel, E. H. K., & Ibrahim, M. A. (2012). Bottom survey along the Egyptian Mediterranean waters off Alexandria. Internal technical report. Alexandria: NIOF.Google Scholar
  65. Rizkalla, S. I., Akel, E. H., & Ragheb, E. (2016). Biodiversity and fisheries of the non-target catch from bottom trawl, off Alexandria, Mediterranean Sea, Egypt. Regional Studies in Marine Science, 3(3), 194–204.CrossRefGoogle Scholar
  66. Schattner, U., & Ben-Avraham, Z. (2007). Transform margin of the northern Levant, eastern Mediterranean: from formation to reactivation. Tectonics, 26, TC5020.
  67. Sharaf El Din, S. H., Eid, F., Saad, N. N., Alam El Din, K. A., & El Sharkawy, M. (2010). The circulation pattern of the Egyptian Mediterranean coast, Emirates. Journal for Engineering Research, 15(1), 59–65.Google Scholar
  68. Shoukr, F. A., Mona, M. H., & Abdel–Hamid M. E. (1984). Holothurians (Echinodermata: Hol- othuroidea) from some Egyptian shores. Bulletin of the Faculty of Sciences of the Zagazig University, 6, 662–682.Google Scholar
  69. Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688.CrossRefGoogle Scholar
  70. Summerhayes, C. P., Sestini, G., Misdorp, R., & Marks, N. (1978). Nile Delta: nature and evolution of continental shelf sediments. Journal of Marine Geology, 27(1–2), 43–65.CrossRefGoogle Scholar
  71. Tregouboff, G., & Rose, M. (1957). Manuel de planctologie Mediterraneenne. I (Texte), 587p, 2 (Fig.), 207 pl. Paris: C.N.R.S..Google Scholar
  72. Whitehead, P. J. P., Bauchot, M. L., Hureau, J. C., Nielsen, J., & Tortonese, E. (Eds.). (1984). Fishes of the north-eastern Atlantic and the Mediterranean (Vol. 1, pp. 1–510). Paris: UNESCO.Google Scholar
  73. Whitehead, P. J. P., Bauchot, M. L., Hureau, J. C., Nielsen, J., & Tortonese, E. (Eds.). (1986). Fishes of the north-eastern Atlantic and the Mediterranean (pp. I–III). Paris: UNESCO 1473 pp.Google Scholar
  74. Zakaria, H.Y. (1992). Distribution and ecology of some zooplankton organisms in the Egyptian Mediterranean waters. M. Sc Thesis, Faculty of Science, Alexandria University. Google Scholar
  75. Zakaria, H. Y. (2006). The zooplankton community in the Egyptian Mediterranean waters: a review. Acta Adriatica, 4(2), 195–206.Google Scholar
  76. Zakaria, H. Y. (2007). On the distribution of zooplankton assemblages in Abu Qir Bay, Alexandria, Egypt. Egyptian Journal of Aquatic Research, 33(1), 238–256.Google Scholar
  77. Zakaria, H. Y. (2014). Impact of climate variability and anthropogenic activities on zooplankton community in the neritic waters of Alexandria, Egypt. JKAU: Marine Science, 25(2), 3–22.Google Scholar
  78. Zakaria, H. Y. (2015). Article Review: Lessepsian migration of zooplankton through Suez Canal and its impact on ecological system. Egyptian Journal of Aquatic Research, 41, 129–144.Google Scholar
  79. Zenetos, A. (2010). Trend in aliens species in the Mediterranean. An answer to Galil, 2009 ≪Taking stock: inventory of alien species in the Mediterranean Sea≫. Biological Invasions, 12, 3379–3338.CrossRefGoogle Scholar
  80. Zenetos, A., Arianoutsou, M., Bazos, I., Balopoulou, S., Corsini-Foka, M., et al. (2015). ELNAIS: a collaborative network on aquatic alien species in Hellas (Greece). Management of Biological Invasions, 6(2), 185–196.CrossRefGoogle Scholar
  81. Zakaria, H. Y., Hassan, A. M., Abo-Senna, F. M., & El-Naggar, H. A. (2016). Abundance, distribution, diversity and zoogeography of epipelagic copepods off the Egyptian Coast (Mediterranean Sea). Egyptian Journal of Aquatic Research, 42, 459–473.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mahmoud M. S. Farrag
    • 1
    Email author
  • Hussein A. El-Naggar
    • 2
  • Mohamed M. A. Abou-Mahmoud
    • 3
  • Ahmed N. Alabssawy
    • 2
  • Hamdy O. Ahmed
    • 4
  • Hamdy A. Abo-Taleb
    • 2
  • Kapiris Kostas
    • 5
  1. 1.Zoology Department, Faculty of ScienceAl-Azhar UniversityAssiutEgypt
  2. 2.Zoology Department, Faculty of ScienceAl-Azhar UniversityCairoEgypt
  3. 3.Faculty of Petroleum and Mining ScienceMatrouh UniversityMarsa MatrouhEgypt
  4. 4.National institute of Oceanography and Fisheries (NIOF)AlexandriaEgypt
  5. 5.Hellenic Centre of Marine ResearchUniversity of AthensAthensGreece

Personalised recommendations