Landscape structure and land use affect estuarine benthic invertebrates in the Virginian Biogeographic Province, USA

  • Marguerite C. PelletierEmail author
  • Arthur J. Gold
  • Jane Copeland
  • Liliana Gonzalez
  • Peter V. August


Estuaries are dynamic transition zones linking freshwater and oceanic habitats. These productive ecosystems are threatened by a variety of stressors including human modification of coastal watersheds. In this study, we examined potential linkages between estuarine condition and the watershed using multimodel inference. We examined attributes at the watershed scale as well as those associated with riparian areas but found that they were highly correlated. We also examined whether attributes closer to the estuary were more strongly related to benthic invertebrate condition and found that this was not generally true. In contrast, variability within the estuary strongly impacted model results and suggests that future modeling should incorporate estuarine variability or focus on the individual stations within the estuary. Modeling estuarine condition indicated that inherent landscape structure (e.g., estuarine area, watershed area, watershed:estuary ratio) is important to predicting benthic invertebrate condition and needs to be considered in the context of watershed/ estuary planning and restoration.


Watershed Estuary Invertebrates 



We would like to thank the EMAP field crews and IT staff for providing the data used in this study, Mike Charpentier for map production, Nina Bonnelycke for helpful advice on the USDA Agricultural Survey, Alisa Morrison for helpful conversations, and Jim Latimer, Hal Walker, and Jonathan Serbst for their technical reviews.


The views expressed in this manuscript are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Any mention of trade names, products, or services does not imply an endorsement by the U.S. Government or the U.S. Environmental Protection Agency. The EPA does not endorse any commercial products, services, or enterprises. This is STICS ORD-027080.

Supplementary material

10661_2019_7401_MOESM1_ESM.docx (32 kb)
ESM 1 (DOCX 31 kb)


  1. Anderson, J.R., E.E. Hardy, J.T. Roach, R.E. Witmer. (1976). A land use and land cover classification system for use with remote sensor data. Geological survey professional paper 964. United States Department of the Interior, Washington, D.C.Google Scholar
  2. Arnold, C. L., & Gibbons, C. J. (1996). Impervious surface coverage: the emergence of a key environmental indicator. Journal of the American Planning Association, 62, 243–257.CrossRefGoogle Scholar
  3. Beal, D. J. 2007. Information criteria methods in SAS for multiple linear regression models. SESUG Proceedings, 15th annual Southeast SAS Users Group Conference, 4-6 November 2007, Hilton Head, SC. Paper SA05:1–10.Google Scholar
  4. Bilkovic, D. M., Roggero, M., Hershner, C. H., & Havens, K. H. (2006). Influence of land use on macrobenthic communities in nearshore estuarine habitats. Estuaries and Coasts, 29, 1185–1195.CrossRefGoogle Scholar
  5. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: a practical information-theoretic approach (2nd ed.). New York: Springer-Verlag.Google Scholar
  6. Burkholder, J., Libra, B., Weyer, P., Heathcote, S., Kolpin, D., Thorne, P. S., & Wichman, M. (2007). Impacts of waste from concentrated animal feeding operations on water quality. Environmental Health Perspectives, 115, 308–312.CrossRefGoogle Scholar
  7. Comeleo, R. L., Paul, J. F., August, P. V., Copeland, J., Baker, C., Hale, S. S., & Latimer, R. W. (1996). Relationships between watershed stressors and sediment contamination in Chesapeake Bay estuaries. Landscape Ecology, 11, 307–319.CrossRefGoogle Scholar
  8. Day, J. W., Britsch, L. D., Hawes, S. R., Shaffer, G. P., Reed, D. J., & Cahoon, D. (2000). Pattern and process of land loss in the Mississippi delta: a spatial and temporal analysis of wetland habitat change. Estuaries, 23, 425–438.CrossRefGoogle Scholar
  9. Dauer, D. M., Weisberg, S. B., & Ranasinghe, J. A. (2000). Relationships between benthic community condition, water quality, sediment quality, nutrient loads, and land use patterns in Chesapeake Bay. Estuaries, 23, 80–96.CrossRefGoogle Scholar
  10. Dauvin, J., Bellan, G., & Bellan-Santini, D. (2010). Benthic indicators: from subjectivity to objectivity – where is the line? Marine Pollution Bulletin, 60, 947–953.CrossRefGoogle Scholar
  11. Edgar, G. J., & Barrett, N. S. (2000). Effects of catchment activities on macrofaunal assemblages in Tasmanian estuaries. Estuarine, Coastal and Shelf Science, 50, 639–654.CrossRefGoogle Scholar
  12. Engle, V. D., & Summers, J. K. (1999). Refinement, validation, and application of a benthic condition index for Gulf of Mexico estuaries. Estuaries, 22, 624–635.CrossRefGoogle Scholar
  13. Engle, V. D., Kurtz, J. C., Smith, L. M., Chancy, C., & Bourgeois, P. (2007). A classification of U.S. estuaries based on physical and hydrologic attributes. Environmental Monitoring and Assessment, 129, 397–412.CrossRefGoogle Scholar
  14. Gillett, D. J., Weisberg, S. B., Grayson, T., Hamilton, A., Hansen, V., Leppo, E. W., Pelletier, M. C., Borja, A., Cadien, D., Dauer, D., Diaz, R., Dutch, M., Hyland, J. L., Kellogg, M., Larsen, P. F., Levinton, J. S., Llansó, R., Lovell, L. L., Montagna, P. A., Pasko, D., Phillips, C. A., Rakocinski, C., Ranasinghe, J. A., Sanger, D. M., Teixeira, H., VanDolah, R. F., Velarde, R. G., & Welch, K. I. (2015). Effect of ecological group classification schemes on performance of the AMBI benthic index in US coastal waters. Ecological Indicators, 50, 99–107.CrossRefGoogle Scholar
  15. Hale, S. S., Paul, J. F., & Heltshe, J. F. (2004). Watershed landscape indicators of estuarine benthic condition. Estuaries, 27, 283–295.CrossRefGoogle Scholar
  16. Holland, A. F., Sanger, D. M., Gawle, C. P., Lerberg, S. B., Santiago, M. S., Riekerk, G. H. M., Zimmerman, L. E., & Scott, G. I. (2004). Linkages between tidal creek ecosystems and the landscape and demographic attributes of their watersheds. Journal of Experimental Marine Biology and Ecology, 298, 151–178.CrossRefGoogle Scholar
  17. Homer, C. C. H., Yang, L., Wylie, B., & Coan, M. (2004). Development of a 2001 national landcover database for the United States. Photogrammetric Engineering and Remote Sensing, 70, 829–840.CrossRefGoogle Scholar
  18. Howarth, R. W., Sharpley, A., & Walker, D. (2002). Sources of nutrient pollution to coastal waters in the United States: implications for achieving coastal water quality goals. Estuaries, 25, 656–676.CrossRefGoogle Scholar
  19. King, R. S., Beaman, J. R., Whigham, D. F., Hines, A. H., Baker, M. E., & Weller, D. E. (2004). Watershed land use is strongly linked to PCBs in white perch in Chesapeake Bay subestuaries. Environmental Science and Technology, 38, 6546–6552.CrossRefGoogle Scholar
  20. King, R. S., Hines, A. H., Craige, F. D., & Gap, S. (2005a). Regional, watershed and local correlates of blue crab and bivalve abundances in subestuaries of Chesapeake Bay, USA. Journal of Experimental Marine Biology and Ecology, 319, 101–116.CrossRefGoogle Scholar
  21. King, R. S., Baker, M. E., Whigham, D. F., Weller, D. E., Jordon, T. E., Kazyak, P. F., & Hurd, M. K. (2005b). Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecological Applications, 15, 137–153.CrossRefGoogle Scholar
  22. Lerberg, S. B., Holland, A. F., & Sanger, D. M. (2000). Responses of tidal creek macrobenthic communities to the effects of watershed development. Estuaries, 23, 838–853.CrossRefGoogle Scholar
  23. Little, C. (2000). The biology of soft shores and estuaries. New York: Oxford University Press.Google Scholar
  24. Mayer, P. M., Reynolds, S. K., Jr., McCutchen, M. D., & Canfield, T. J. (2007). Meta-analysis of nitrogen removal in riparian buffers. Journal of Environmental Quality, 36, 1172–1180.CrossRefGoogle Scholar
  25. O’Neill, R. V., Hunsaker, C. T., Jones, K. B., Ritters, K. H., Wickham, J. D., Schwartz, P. M., Goodman, I. A., Jackson, B. L., & Bailargeon, W. S. (1997). Monitoring environmental quality at the landscape scale. BioScience, 47, 513–519.CrossRefGoogle Scholar
  26. Paul, J. F., Scott, K. J., Campbell, D. E., Gentile, J. H., Strobel, C. S., Valente, R. M., Weisberg, S. B., Holland, A. F., & Ranasinghe, J. A. (2001). Developing and applying a benthic index of estuarine condition for the Virginian Biogeographic Province. Ecological Indicators, 1, 83–99.CrossRefGoogle Scholar
  27. Paul, J. F., Comeleo, R. L., & Copeland, J. (2002). Landscape metrics and estuarine sediment contamination in the mid-Atlantic and southern New England regions. Journal of Environmental Quality, 31, 836–845.CrossRefGoogle Scholar
  28. Paul, M. J., & Meyer, J. L. (2001). Streams in urban landscapes. Annual Review of Ecology and Systematics, 32, 333–365.CrossRefGoogle Scholar
  29. Paerl, H. W., Valdes, L. M., Pickney, J. L., Piehler, M. F., Dyble, J., & Moisander, P. H. (2003). Phytoplankton photopigments as indicators of estuarine and coastal eutrophication. Bioscience, 53, 953–964.CrossRefGoogle Scholar
  30. Pearson, T. H., & Rosenberg, R. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology. Annual Review, 16, 229–311.Google Scholar
  31. Pelletier, M. C., Gold, A. J., Gonzalez, L., & Oviatt, C. (2012). Application of multiple index development approaches to benthic invertebrate data from the Virginian Biogeographic Province, USA. Ecological Indicators, 23, 176–188.CrossRefGoogle Scholar
  32. Pelletier, M. C., Gillett, D. J., Hamilton, A., Grayson, T., Hansen, V., Leppo, E. W., Weisberg, S. B., & Borja, A. (2018). Adaptation and application of multivariate AMBI (M-AMBI) in US coastal waters. Ecological Indicators, 89, 818–827.CrossRefGoogle Scholar
  33. Pinto, R., Patrício, J., Baeta, A., Fath, B. D., Neto, J. M., & Marques, J. C. (2009). Review and evaluation of estuarine biotic indices to assess benthic condition. Ecological Indicators, 9, 1–25.CrossRefGoogle Scholar
  34. Potter, K. M., Cubbage, F. W., & Schaberg, R. H. (2005). Multiple-scale landscape predictors of benthic macroinvertebrate community structure in North Carolina. Landscape and Urban Planning, 71, 77–90.CrossRefGoogle Scholar
  35. Rakocinski, C. F., Brown, S. S., Gaston, G. R., Heard, R. W., Walker, W. W., & Summers, J. K. (1997). Macrobenthic responses to natural and contaminant-related gradients in northern Gulf of Mexico estuaries. Ecological Applications, 7, 1278–1298.CrossRefGoogle Scholar
  36. Rhoads, D. C. (1974). Organism-sediment relations on the muddy sea floor. Oceanography and Marine Biology. Annual Review, 12, 63–300.Google Scholar
  37. Sakamaki, T., Shum, J. Y. T., & Richardson, J. S. (2010). Watershed effects on chemical properties of sediment and primary consumption in estuarine tidal flats: Importance of watershed size and food selectivity by macrobenthos. Ecosystems, 13, 328–337.CrossRefGoogle Scholar
  38. SAS Institute Inc. (2015). SAS/IML 14.1 User’s Guide. Cary: SAS Institute Inc..Google Scholar
  39. Seitz, R. D., Knick, K. E., Davenport, T. M., & Saluta, G. G. (2018). Human influence at the coast: upland and shoreline stressors affect coastal macrofauna and are mediated by salinity. Estuaries and Coasts, 41, 114–130.CrossRefGoogle Scholar
  40. Silverman, B. W. (1986). Density estimation for statistics and data analysis. New York: Chapman and Hall.CrossRefGoogle Scholar
  41. Soetaert, K., Vincx, M., Wittoeck, J., & Tulkens, M. (1995). Meiobenthic distribution and nematode community structure in five European estuaries. Hydrobiologia, 311, 185–206.CrossRefGoogle Scholar
  42. Snelgrove, P. V. R. (1998). The biodiversity of macrofaunal organisms in marine sediments. Biodiversity and Conservation, 7, 1123–1132.CrossRefGoogle Scholar
  43. Sponseller, R. A., Benfield, E. F., & Vallett, H. M. (2001). Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwater Biology, 46, 1409–1424.CrossRefGoogle Scholar
  44. Thrush, S. F., Hewitt, J. E., Cummings, V. J., Ellis, J. L., Hatton, C., Lohrer, A., & Norkko, A. (2004). Muddy waters: elevating sediment input to coastal and estuarine habitats. Frontiers in Ecology and the Environment, 2, 299–306.CrossRefGoogle Scholar
  45. Trombulak, S. C., & Frissell, C. A. (2000). Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology, 14, 18–30.CrossRefGoogle Scholar
  46. Weisberg, S. B., Ranasinghe, J. A., Schaffner, L. C., Diaz, R. J., Dauer, D. M., & Frithsen, J. B. (1997). An estuarine index of biological integrity (B-IBI) for Chesapeake Bay. Estuaries, 20, 149–158.CrossRefGoogle Scholar
  47. Weller, D. E., Jordan, T. E., & Correll, D. L. (1998). Heuristic models for material discharge from landscapes with riparian buffers. Ecological Applications, 8, 1156–1169.CrossRefGoogle Scholar
  48. U.S. EPA. (2001). National Coastal Assessment: Field Operations Manual. EPA/620/R-01/003. Gulf Breeze: United States Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Laboratory.Google Scholar
  49. Venice System. (1958). Venice system symposium on the classification of brackish waters. Venice, April 8–14, 1958. Archives Oceanography and Limnology, 11(Suppl), 1–248.Google Scholar
  50. Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. New York: Springer Science and Business Media.CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  • Marguerite C. Pelletier
    • 1
    Email author
  • Arthur J. Gold
    • 2
  • Jane Copeland
    • 1
  • Liliana Gonzalez
    • 3
  • Peter V. August
    • 2
  1. 1.Office of Research and Development, National Health and Environmental Effects Laboratory, Atlantic Ecology DivisionU.S. Environmental Protection AgencyNarragansettUSA
  2. 2.Department of Natural Resources ScienceUniversity of Rhode IslandKingstonUSA
  3. 3.Department of Computer Science and StatisticsUniversity of Rhode IslandKingstonUSA

Personalised recommendations