Advertisement

Copper biosorption from an aqueous solution by the dead biomass of Penicillium ochrochloron

  • Ellen Cristina Miranda LacerdaEmail author
  • Marcela dos Passos Galluzzi Baltazar
  • Tatiana Alves dos Reis
  • Claudio Augusto Oller do Nascimento
  • Benedito Côrrea
  • Luciana Jandelli Gimenes
Article

Abstract

The present study investigated the effect of contact time, the initial concentration of metal ions, and the biomass dose on the Cu(II) biosorption from an aqueous solution using dead biomass of filamentous fungus Penicillium ochrochloron, which was isolated at the Sossego mine, a copper-contaminated site located in Canaã dos Carajás city, Brazil. The Cu(II) biosorption started rapidly and increased gradually until the equilibrium was reached at 20 min. The Cu(II) uptake decreased as the initial Cu(II) concentration increased, reaching the saturation at 200 mg/L. The Cu(II) biosorption was considerably higher using 0.2 g than 0.5 g of the biomass in 50 mL of solution. The average biosorption capacity of Cu(II) was 7.53 mg/g and the maximum Cu(II) removal 75.0%. The Freundlich and Langmuir isotherm models adequately described the adsorption data. Our results evidenced that the dead biomass of P. ochrochloron has a great potential as a biosorbent to remove copper from an aqueous solution. Therefore, it could be explored for the development of the environmental recovery process.

Keywords

Bioremediation Copper removal Filamentous fungi Isotherm models Metal adsorption 

Notes

Funding

This study was financially supported by Vale S.A., “Banco Nacional de Desenvolvimento Econômico e Social” and “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior”.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Akar, T., & Tunali, S. (2005). Biosorption performance of Botrytis cinerea fungal by-products for removal of Cd(II) and Cu(II) ions from aqueous solutions. Minerals Engineering, 18(11), 1099–1109.  https://doi.org/10.1016/j.mineng.2005.03.002.CrossRefGoogle Scholar
  2. Akar, T., & Tunali, S. (2006). Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution. Bioresource Technology, 97(15), 1780–1787.  https://doi.org/10.1016/j.biortech.2005.09.009.CrossRefGoogle Scholar
  3. Akinkunmi, W. A., Husaini, A. A. S. A., Zulkharnain, A., Guan, T. M., & Roslan, H. A. (2016). Mechanism of biosorption of lead (II) and copper (II) ions using dead biomass of Fusarium equiseti strain UMAS and Penicillium citrinum strain UMAS B2. Journal of Biochemistry, Microbiology and Biotechnology, 4(2), 1–6 https://journal.hibiscuspublisher.com/index.php/JOBIMB/article/view/303.Google Scholar
  4. Amin, N. K. (2009). Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics. Journal of Hazardous Materials, 165(1–3), 52–62.  https://doi.org/10.1016/j.jhazmat.2008.09.067.CrossRefGoogle Scholar
  5. Areco, M. M., Hanela, S., Duran, J., & Afonso, M. d. S. (2012). Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation. Journal of Hazardous Materials, 213–214, 123–132.  https://doi.org/10.1016/j.jhazmat.2012.01.073.CrossRefGoogle Scholar
  6. Atkins, P., & Jones, L. (2012). Princípios de Química: Questionando a vida moderna e o meio ambiente (fifth.). Porto Alegre: Bookman.Google Scholar
  7. Baird, C., & Cann, M. (2011). Química ambiental (fourth.). Porto Alegre: Bookman.Google Scholar
  8. Baltazar, M. P. G., Gracioso, L. H., Avanzi, I. R., Karolski, B., Tenório, J. A. S., Nascimento, C. A. O., & Perpetuo, E. A. (2018). Copper biosorption by Rhodococcus erythropolis isolated from the Sossego Mine – PA – Brazil. Journal of Materials Research and Technology.  https://doi.org/10.1016/j.jmrt.2018.04.006.
  9. Barquilha, C. E. R., Cossich, E. S., Tavares, C. R. G., & Silva, E. A. (2017). Biosorption of nickel (II) and copper (II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp. Journal of Cleaner Production, 150, 58–64.  https://doi.org/10.1016/j.jclepro.2017.02.199.CrossRefGoogle Scholar
  10. Bhainsa, K. C., & D’Souza, S. F. (2008). Removal of copper ions by the filamentous fungus, Rhizopus oryzae from aqueous solution. Bioresource Technology, 99(9), 3829–3835.  https://doi.org/10.1016/j.biortech.2007.07.032.CrossRefGoogle Scholar
  11. Bulgariu, D., & Bulgariu, L. (2012). Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass. Bioresource Technology, 103(1), 489–493.  https://doi.org/10.1016/j.biortech.2011.10.016.CrossRefGoogle Scholar
  12. Camakaris, J., Voskoboinik, I., & Mercer, J. F. (1999). Molecular mechanisms of copper homeostasis. Biochemical and Biophysical Research Communications., 261, 225–232.  https://doi.org/10.1006/bbrc.1999.1073.CrossRefGoogle Scholar
  13. Crini, G., Peindy, H. N., Gimbert, F., & Robert, C. (2007). Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Separation and Purification Technology, 53(1), 97–110.  https://doi.org/10.1016/j.seppur.2006.06.018.CrossRefGoogle Scholar
  14. Dursun, A. Y. (2006). A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger. Biochemical Engineering Journal, 28(2), 187–195.  https://doi.org/10.1016/j.bej.2005.11.003.CrossRefGoogle Scholar
  15. Farooq, U., Kozinski, J. A., Khan, M. A., & Athar, M. (2010). Biosorption of heavy metal ions using wheat based biosorbents - a review of the recent literature. Bioresource Technology, 101(14), 5043–5053.  https://doi.org/10.1016/j.biortech.2010.02.030.CrossRefGoogle Scholar
  16. Fatima, T., Nadeem, R., Masood, A., Saeed, R., & Ashraf, M. (2013). Sorption of lead by chemically modified rice bran. International journal of Environmental Science and Technology, 10(6), 1255–1264.  https://doi.org/10.1007/s13762-013-0228-x.CrossRefGoogle Scholar
  17. Gadd, G. M. (1993). Interactions of fungi with toxic metals. New Phytologist, 124(47), 25–60.  https://doi.org/10.2307/2558069.CrossRefGoogle Scholar
  18. Gadd, G. M. (2004). Microbial influence on metal mobility and application for bioremediation. Geoderma, 122, 109–119.  https://doi.org/10.1016/j.geoderma.2004.01.002.CrossRefGoogle Scholar
  19. Gadd, G. M. (2009). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84(1), 13–28.  https://doi.org/10.1002/jctb.1999.CrossRefGoogle Scholar
  20. Gadd, G. M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 156(Pt3), 609–643.  https://doi.org/10.1099/mic.0.037143-0.CrossRefGoogle Scholar
  21. Gazem, M. A. H., & Nazareth, S. (2012). Isotherm and kinetic models and cell surface analysis for determination of the mechanism of metal sorption by Aspergillus versicolor. World Journal of Microbiology and Biotechnology, 28(7), 2521–2530.  https://doi.org/10.1007/s11274-012-1060-z.CrossRefGoogle Scholar
  22. Gazem, M. A. H., & Nazareth, S. (2013). Sorption of lead and copper from an aqueous phase system by marine-derived Aspergillus species. Annals of Microbiology, 63(2), 503–511.  https://doi.org/10.1007/s13213-012-0495-7.CrossRefGoogle Scholar
  23. Griffitt, R. J., Luo, J., Gao, J., Bonzongo, J. C., & Barber, D. S. (2008). Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environmental Toxicology and Chemistry, 27(9), 1972–1978.  https://doi.org/10.1897/08-002.1.CrossRefGoogle Scholar
  24. Huang, J., Liu, D., Lu, J., Wang, H., Wei, X., & Liu, J. (2016). Biosorption of reactive black 5 by modified Aspergillus versicolor biomass: kinetics, capacity and mechanism studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 492, 242–248.  https://doi.org/10.1016/j.colsurfa.2015.11.071.CrossRefGoogle Scholar
  25. Jiang, L., Zhou, W., Liu, D., Liu, T., & Wang, Z. (2017). Biosorption isotherm study of Cd2+, Pb2+ and Zn2+ biosorption onto marine bacterium Pseudoalteromonas sp. SCSE709-6 in multiple systems. Journal of Molecular Liquids, 247, 230–237.  https://doi.org/10.1016/j.molliq.2017.09.117.CrossRefGoogle Scholar
  26. Kahraman, S., Asma (Hamamci), D., Erdemoglu, S., & Yesilada, O. (2005). Biosorption of copper(II) by live and dried biomass of the white rot fungi Phanerochaete chrysosporium and Funalia trogii. Engineering in Life Sciences, 5(1), 72–77.  https://doi.org/10.1002/elsc.200420057.CrossRefGoogle Scholar
  27. Kariuki, Z., Kiptoo, J., & Onyancha, D. (2017). Biosorption studies of lead and copper using rogers mushroom biomass “Lepiota hystrix.”. South African Journal of Chemical Engineering, 23, 62–70.  https://doi.org/10.1016/j.sajce.2017.02.001.CrossRefGoogle Scholar
  28. Kratochvil, D., & Volesky, B. (1998). Advances in the biosorption of heavy metals. Trends Biotechnology, 16(July), 291–300.  https://doi.org/10.1016/S0167-7799(98)01218-9.CrossRefGoogle Scholar
  29. Kumar, R., Bishnoi, N. R., Garima, & Bishnoi, K. (2008). Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass. Chemical Engineering Journal, 135(3), 202–208.  https://doi.org/10.1016/j.cej.2007.03.004.CrossRefGoogle Scholar
  30. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38(11), 2221–2295.  https://doi.org/10.1021/ja02268a002.CrossRefGoogle Scholar
  31. Li, X., Xu, Q., Han, G., Zhu, W., Chen, Z., He, X., & Tian, X. (2009). Equilibrium and kinetic studies of copper(II) removal by three species of dead fungal biomasses. Journal of Hazardous Materials, 165(1–3), 469–474.  https://doi.org/10.1016/j.jhazmat.2008.10.013.CrossRefGoogle Scholar
  32. Lloyd, J. R., & Lovley, D. R. (2001). Microbial detoxification of metals and radionuclides. Current Opinion in Biotechnology., 12, 248–253.  https://doi.org/10.1016/S0958-1669(00)00207-X.CrossRefGoogle Scholar
  33. Lovley, D. R., & Coates, J. D. (1997). Bioremediation of metal contamination. Current Opinion in Biotechnology, 8, 285–289.  https://doi.org/10.1023/A:1022874727526.CrossRefGoogle Scholar
  34. Mishra, A., & Malik, A. (2012). Simultaneous bioaccumulation of multiple metals from electroplating effluent using Aspergillus lentulus. Water Research, 46(16), 4991–4998.  https://doi.org/10.1016/j.watres.2012.06.035.CrossRefGoogle Scholar
  35. Rao, K. R., Rashmi, K., Latha, J. N. L., & Mohan, P. M. (2005). Bioremediation of toxic metal ions using biomass of Aspergillus fumigatus from fermentative waste. Indian Journal of Biotechnology, 4, 139–143.Google Scholar
  36. Rooney, C. P., Zhao, F. J., & McGrath, S. P. (2006). Soil factors controlling the expression of copper toxicity to plants in a wide range of European soils. In Environmental Toxicology and Chemistry, 25, 726–732.  https://doi.org/10.1897/04-602R.1.CrossRefGoogle Scholar
  37. Russell, J. B. (1981). Química geral. São Paulo: McGraw-Hill do Brasil.Google Scholar
  38. Salvadori, M. R., Ando, R. A., Do Nascimento, C. A. O., & Corrêa, B. (2014). Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS One, 9(1), e87968.  https://doi.org/10.1371/journal.pone.0087968.CrossRefGoogle Scholar
  39. Say, R., Denizli, A., & Arõca, M. Y. (2001). Biosorption of cadmium (II), lead (II) and copper (II) with the filamentous fungus Phanerochaete chrysosporium. Bioresource Technology, 76(1), 67–70.  https://doi.org/10.1016/S0960-8524(00)00071-7.CrossRefGoogle Scholar
  40. Shriver, D. F., & Atkins, P. W. (2003). Química inorgânica (third.). Porto Alegre: Bookman.Google Scholar
  41. Tran, H. T., Vu, N. D., Matsukawa, M., Okajima, M., Kaneko, T., Ohki, K., & Yoshikawa, S. (2016). Heavy metal biosorption from aqueous solutions by algae inhabiting rice paddies in Vietnam. Journal of Environmental Chemical Engineering, 4(2), 2529–2535.  https://doi.org/10.1016/j.jece.2016.04.038.CrossRefGoogle Scholar
  42. Verma, A., Shalu, Singh, A., Bishnoi, N. R., & Gupta, A. (2013). Biosorption of Cu (II) using free and immobilized biomass of Penicillium citrinum. Ecological Engineering, 61, 486–490.  https://doi.org/10.1016/j.ecoleng.2013.10.008.CrossRefGoogle Scholar
  43. Vieira, R. H. S. F., & Volesky, B. (2000). Biosorption: a solution to pollution? International Microbiology, 3(1), 17–24.Google Scholar
  44. Vijayaraghavan, K., & Balasubramanian, R. (2015). Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. Journal of Environmental Management., 160, 283–296.  https://doi.org/10.1016/j.jenvman.2015.06.030.CrossRefGoogle Scholar
  45. Volesky, B. (2007). Biosorption and me. Water Research, 41(18), 4017–4029.  https://doi.org/10.1016/j.watres.2007.05.062.CrossRefGoogle Scholar
  46. Volesky, B., & Naja, G. (2005). Biosorption: application strategies. International Biohydrometallurgy.  https://doi.org/10.1007/978-3-642-11329-1_9.CrossRefGoogle Scholar
  47. Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195–226.  https://doi.org/10.1016/j.biotechadv.2008.11.002.CrossRefGoogle Scholar
  48. Wong, Y. C., Szeto, Y. S., Cheung, W. H., & McKay, G. (2004). Adsorption of acid dyes on chitosan—equilibrium isotherm analyses. Process Biochemistry, 39(6), 693–702.  https://doi.org/10.1016/S0032-9592(03)00152-3.CrossRefGoogle Scholar
  49. Yahaya, Y. A., Don, M. M., & Bhatia, S. (2009). Biosorption of copper (II) onto immobilized cells of Pycnoporus sanguineus from aqueous solution: equilibrium and kinetic studies. Journal of Hazardous Materials, 161(1), 189–195.  https://doi.org/10.1016/j.jhazmat.2008.03.104.CrossRefGoogle Scholar
  50. Yi, Y., Lv, J., Zhong, N., & Wu, G. (2017). Biosorption of Cu2+ by a novel modified spent chrysanthemum: Kinetics, isotherm and thermodynamics. Journal of Environmental Chemical Engineering, 5(4), 4151–4156.  https://doi.org/10.1016/j.jece.2017.07.077.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ellen Cristina Miranda Lacerda
    • 1
    • 2
    • 3
    Email author
  • Marcela dos Passos Galluzzi Baltazar
    • 3
    • 4
  • Tatiana Alves dos Reis
    • 2
  • Claudio Augusto Oller do Nascimento
    • 3
    • 4
  • Benedito Côrrea
    • 2
  • Luciana Jandelli Gimenes
    • 1
    • 3
  1. 1.Programa de Pós-Graduação Interunidades em BiotecnologiaUniversidade de São Paulo, Instituto Butantan, Instituto de Pesquisas TecnológicasSão PauloBrazil
  2. 2.Laboratório de Micotoxinas, Departamento de Microbiologia, Instituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
  3. 3.Centro de Capacitação e Pesquisa em Meio AmbienteUniversidade de São Paulo, CEPEMA-POLI-USPCubatãoBrazil
  4. 4.Departamento de Engenharia QuímicaUniversidade de São Paulo, POLI-USPSão PauloBrazil

Personalised recommendations