Differentiation of weathered chemically dispersed oil from weathered crude oil

  • Xing Song
  • Leonard M. Lye
  • Bing Chen
  • Baiyu ZhangEmail author


Oil fingerprinting is a crucial technology to trace the sources and behaviors of spilled oil. The use of dispersants enhances the stay of dispersed oil in a water column and changes the important properties of spilled oil. In case of fingerprinting of dispersed oil driven by dispersants, the fate and behaviors of biomarkers may be affected by the application of dispersants. Limited studies have investigated the statistical difference between fingerprinting of dispersed oil and non-dispersed oil using biomarkers, and the possible influence of the differences, if present. This study applied several principal component analyses (PCA) to differentiate weathered chemically dispersed oil from weathered crude (non-dispersed) oil using 103 diagnostic ratios of the same type of biomarkers and those of two types of biomarkers as input data. It showed that weathered chemically dispersed oil (CDO) can be differentiated from weathered crude oil (WCO) using specific diagnostic ratios that are affected by weathering. PCA analyses indicated the effects of the application of dispersants and weathering duration on weathering of biomarkers in CDO and WCO.


Oil fingerprinting Principal component analysis Weathering Chemically dispersed oil Biomarker 



The authors acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Research Chairs (CRC) Program, Canada Foundation for Innovation (CFI), Fisheries and Oceans Canada (DFO), and Environment and Climate Change Canada (ECCC) for their kind support.

Supplementary material

10661_2019_7392_MOESM1_ESM.docx (86 kb)
ESM 1 (DOCX 85 kb)


  1. Alberto, W. D., del Pilar, D. A. M. A., Valeria, A. M. A., Fabiana, P. S., Cecilia, H. A., & de los Ángeles, B. M. A. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquı́a River Basin (Córdoba–Argentina). Water Research, 35(12), 2881–2894.CrossRefGoogle Scholar
  2. Aranberri, I., Beverley, K. J., Binks, B. P., Clint, J. H., & Fletcher, P. D. (2002). How do emulsions evaporate? Langmuir, 18(9), 3471–3475.CrossRefGoogle Scholar
  3. Azevedo, D., Tamanqueira, J., Dias, J., Carmo, A., Landau, L., & Gonçalves, F. (2008). Multivariate statistical analysis of diamondoid and biomarker data from Brazilian basin oil samples. Fuel, 87(10–11), 2122–2130.CrossRefGoogle Scholar
  4. Bacosa, H. P., Erdner, D. L., & Liu, Z. (2015). Differentiating the roles of photooxidation and biodegradation in the weathering of Light Louisiana Sweet crude oil in surface water from the Deepwater Horizon site. Marine Pollution Bulletin, 95(1), 265–272.CrossRefGoogle Scholar
  5. Bao, M., Sun, P., Yang, X., Wang, X., Wang, L., Cao, L., & Li, F. (2014). Biodegradation of marine surface floating crude oil in a large-scale field simulated experiment. Environmental Science: Processes & Impacts, 16(8), 1948–1956.Google Scholar
  6. Bayona, J. M., Domínguez, C., & Albaigés, J. (2015). Analytical developments for oil spill fingerprinting. Trends in Environmental Analytical Chemistry, 5, 26–34.CrossRefGoogle Scholar
  7. Brakstad, O. G., Nordtug, T., & Throne-Holst, M. (2015). Biodegradation of dispersed Macondo oil in seawater at low temperature and different oil droplet sizes. Marine Pollution Bulletin, 93(1–2), 144–152.CrossRefGoogle Scholar
  8. Christensen, J. H., Hansen, A. B., Tomasi, G., Mortensen, J., & Andersen, O. (2004). Integrated methodology for forensic oil spill identification. Environmental Science & Technology, 38(10), 2912–2918.CrossRefGoogle Scholar
  9. Christensen, J. H., Tomasi, G., & Hansen, A. B. (2005). Chemical fingerprinting of petroleum biomarkers using time warping and PCA. Environmental Science & Technology, 39(1), 255–260.CrossRefGoogle Scholar
  10. Daling, P. S., Leirvik, F., Almås, I. K., Brandvik, P. J., Hansen, B. H., Lewis, A., & Reed, M. (2014). Surface weathering and dispersibility of MC252 crude oil. Marine Pollution Bulletin, 87(1), 300–310.CrossRefGoogle Scholar
  11. Fayad, N. M., & Overton, E. (1995). A unique biodegradation pattern of the oil spilled during the 1991 Gulf War. Marine Pollution Bulletin, 30(4), 239–246.CrossRefGoogle Scholar
  12. Ismail, A., Toriman, M. E., Juahir, H., Kassim, A. M., Zain, S. M., Ahmad, W. K. W., Wong, K. F., Retnam, A., Zali, M. A., Mokhtar, M., & Yusri, M. A. (2016). Chemometric techniques in oil classification from oil spill fingerprinting. Marine Pollution Bulletin, 111(1–2), 339–346.CrossRefGoogle Scholar
  13. Jeffers, J. (1967). Two case studies in the application of principal component analysis. Applied Statistics, 16, 225–236.CrossRefGoogle Scholar
  14. Kaufman, R., Dashti, H., Kabir, C., Pederson, J., Moon, M., Quttainah, R., & Al-Wael, H. (1997). Characterizing the greater Burgan Field: use of geochemistry and oil fingerprinting. In Middle East Oil Show and Conference, Bahrain: Society of Petroleum Engineers, 5, 385–394.Google Scholar
  15. Kendall, M. G. (1948). Rank correlation methods. Oxford, England: Griffin.Google Scholar
  16. Lessard, R. R., & DeMarco, G. (2000). The significance of oil spill dispersants. Spill Science & Technology Bulletin, 6(1), 59–68.CrossRefGoogle Scholar
  17. Ma, H., Liu, L., & Chen, T. (2010). Water security assessment in Haihe River Basin using principal component analysis based on Kendall τ. Environmental Monitoring and Assessment, 163(1), 539–544.CrossRefGoogle Scholar
  18. Macnaughton, S. J., Swannell, R., Daniel, F., & Bristow, L. (2003). Biodegradation of dispersed Forties crude and Alaskan North Slope oils in microcosms under simulated marine conditions. Spill Science & Technology Bulletin, 8(2), 179–186.CrossRefGoogle Scholar
  19. Olson, G. M., Gao, H., Meyer, B. M., Miles, M. S., & Overton, E. B. (2017). Effect of Corexit 9500A on Mississippi Canyon crude oil weathering patterns using artificial and natural seawater. Heliyon, 3(3), e00269.CrossRefGoogle Scholar
  20. Prata, P. S., Alexandrino, G. L., Mogollón, N. G. S., & Augusto, F. (2016). Discriminating Brazilian crude oils using comprehensive two-dimensional gas chromatography–mass spectrometry and multiway principal component analysis. Journal of Chromatography A, 1472, 99–106.CrossRefGoogle Scholar
  21. Prince, R. C. (2015). Oil spill dispersants: boon or bane? Environmental Science & Technology, 49(11), 6376–6384.CrossRefGoogle Scholar
  22. Prince, R. C., McFarlin, K. M., Butler, J. D., Febbo, E. J., Wang, F. C., & Nedwed, T. J. (2013). The primary biodegradation of dispersed crude oil in the sea. Chemosphere, 90(2), 521–526.CrossRefGoogle Scholar
  23. Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 38(18), 3980–3992.CrossRefGoogle Scholar
  24. Song, X., Zhang, B., Chen, B., & Cai, Q. (2016). Use of sesquiterpanes, steranes, and terpanes for forensic fingerprinting of chemically dispersed oil. Water, Air, & Soil Pollution, 227(8), 281.CrossRefGoogle Scholar
  25. Song, X., Zhang, B., Chen, B., Lye, L., & Li, X. (2018). Aliphatic and aromatic biomarkers for fingerprinting of weathered chemically dispersed oil. Environmental Science and Pollution Research, 25(16), 15702–15714.Google Scholar
  26. Stout, S. A., Uhler, A. D., & McCarthy, K. J. (2001). A strategy and methodology for defensibly correlating spilled oil to source candidates. Environmental Forensics, 2(1), 87–98.CrossRefGoogle Scholar
  27. Sun, P., Bao, K., Li, H., Li, F., Wang, X., Cao, L., Li, G., Zhou, Q., Tang, H., & Bao, M. (2018). An efficient classification method for fuel and crude oil types based on m/z 256 mass chromatography by COW-PCA-LDA. Fuel, 222, 416–423.CrossRefGoogle Scholar
  28. Sun, P., Bao, M., Li, F., Cao, L., Wang, X., Zhou, Q., Li, G., & Tang, H. (2015). Sensitivity and identification indexes for fuel oils and crude oils based on the hydrocarbon components and diagnostic ratios using principal component analysis (PCA) biplots. Energy & Fuels, 29(5), 3032–3040.CrossRefGoogle Scholar
  29. Swannell, R. P., & Daniel, F. (1999). Effect of dispersants on oil biodegradation under simulated marine conditions. In International Oil Spill Conference, Washington, DC: American Petroleum Institute,1999, 169-176.Google Scholar
  30. Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 61(3), 611–622.CrossRefGoogle Scholar
  31. Tomasi, G., Van Den Berg, F., & Andersson, C. (2004). Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. Journal of Chemometrics, 18(5), 231–241.CrossRefGoogle Scholar
  32. Wang, C., Chen, B., Zhang, B., He, S., & Zhao, M. (2013). Fingerprint and weathering characteristics of crude oils after Dalian oil spill, China. Marine Pollution Bulletin, 71(1), 64–68.CrossRefGoogle Scholar
  33. Wang, Z., Stout, S. A., & Fingas, M. (2006a). Forensic fingerprinting of biomarkers for oil spill characterization and source identification. Environmental Forensics, 7(2), 105–146.CrossRefGoogle Scholar
  34. Wang, Z., Yang, C., Hollebone, B., & Fingas, M. (2006b). Forensic fingerprinting of diamondoids for correlation and differentiation of spilled oil and petroleum products. Environmental Science & Technology, 40(18), 5636–5646.CrossRefGoogle Scholar
  35. Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1–3), 37–52.CrossRefGoogle Scholar
  36. Zhuang, M., Abulikemu, G., Campo, P., Platten, W. E., Suidan, M. T., Venosa, A. D., et al. (2016). Effect of dispersants on the biodegradation of South Louisiana crude oil at 5 and 25° C. Chemosphere, 144, 767–774.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Engineering and Applied ScienceMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations