Advertisement

An important role of decomposing wood for soil environment with a reference to communities of springtails (Collembola)

  • Peter ČuchtaEmail author
  • Jiří Kaňa
  • Václav Pouska
Article

Abstract

Present study focused on how the presence of decaying wood affects soil environment including its biota. The study was carried out in the montane spruce forest, disturbed by wind and bark beetles in Trojmezná Mt. of the Bohemian Forest in the Czech Republic. According to the results, presence of decomposing wood influenced soil environment in terms of its chemical properties by increasing soil pH and total carbon content significantly in soil below the trunks compared with soil from further distance. Decomposing wood did not affect total density and species richness of Collembola, but it had a significant influence on species composition and some species were more abundant in soil right below the trunks whereas others preferred soil environment further from them. Finally, significant relations, both positive and negative, were recorded between some Collembola species and ammonium. Thus, this substance might play a role of a volatile attractant in soil environment.

Keywords

Decomposing wood Decay Saprotrophic fungi Ammonium content Community data Collembola 

Notes

Acknowledgements

We would like to thank Daniel Vaněk for his technical support.

Funding information

This study was supported by the Czech Science Foundation (projects P 504-17-15229S and 13-23647P).

References

  1. Berg, M. P., Stoffer, M., & van den Heuvel, H. H. (2004). Feeding guilds in Collembola based on digestive enzymes. Pedobiologia, 48, 589–601.CrossRefGoogle Scholar
  2. Boddy, L., & Jones, T. H. (2008). Interactions between Basidiomycota and invertebrates. In L. Boddy, J. C. Frankland, & P. van West (Eds.), Ecology of saprotrophic Basidiomycetes (pp. 153–177). Amsterdam: Elsevier.Google Scholar
  3. Bretfeld, G. (1999). Symphypleona. In W. Dunger (Ed.), Synopses on Palaearctic Collembola (Vol. 2). Görlitz: Abhandlungen und Berichte des Naturkundemuseums.Google Scholar
  4. Caravaca, F., & Ruess, L. (2014). Arbuscular mycorrhizal fungi and their associated microbial community modulated by Collembola grazers in host plant free substrate. Soil Biology & Biochemistry, 69, 25–33.CrossRefGoogle Scholar
  5. Chahartaghi, M., Langel, R. S., Scheu, S., & Ruess, L. (2005). Feeding guilds in Collembola based on nitrogen stable isotope ratios. Soil Biology and Biochemistry, 37, 1718–1725.CrossRefGoogle Scholar
  6. Chen, B., Snider, R. J., & Snider, R. M. (1995). Food preference and effects of food type on the life history of some soil Collembola. Pedobiologia, 39, 496–505.Google Scholar
  7. Crossley, D. A., Jr., & Blair, J. M. (1991). A high-efficiency, “low-technology” Tullgren-type extractor for soil microarthropods. Agriculture, Ecosystems and Environment, 34, 187–192.CrossRefGoogle Scholar
  8. Crowther, T. W., & A’Bear, A. D. (2012). Impacts of grazing soil fauna on decomposer fungi are species-specific and density-dependent. Fungal Ecology, 5, 277–281.CrossRefGoogle Scholar
  9. Crowther, T. W., Boddy, L., & Hefin, J. T. (2011a). Species-specific effects of soil fauna on fungal foraging and decomposition. Oecologia, 167, 535–545.CrossRefGoogle Scholar
  10. Crowther, T. W., Hefin, J. T., & Boddy, L. (2011b). Species-specific effects of grazing invertebrates on mycelial emergence and growth from woody resources into soil. Fungal Ecology, 4, 333–341.CrossRefGoogle Scholar
  11. Crowther, T. W., Boddy, L., & Hefin, J. T. (2012). Functional and ecological consequences of saprotrophic fungus–grazer interactions. The ISME Journal, 6, 1992–2001.CrossRefGoogle Scholar
  12. Domene, X., Hanley, K., Enders, A., & Lehmann, J. (2015). Short-term mesofauna responses to soil additions of corn stover biochar and the role of microbial biomass. Applied Soil Ecology, 89, 10–17.CrossRefGoogle Scholar
  13. Dunger, W., & Schlitt, B. (2011). Tullbergiidae. In W. Dunger (Ed.), Synopses on Palaearctic Collembola (Vol. 6/1). Görlitz: Abhandlungen und Berichte des Naturkundemuseums.Google Scholar
  14. Fiera, C. (2014a). Application of stable isotopes and lipid analysis to understand trophic interactions in springtails. North-Western Journal of Zoology, 10, 227–235.Google Scholar
  15. Fiera, C. (2014b). Detection of food in the gut content of Heteromurus nitidus (Hexapoda: Collembola) by DNA/PCR-based molecular analysis. North-Western Journal of Zoology, 10, 67–73.Google Scholar
  16. Fjellberg A. (1998). The Collembola of Fennoscandia and Denmark, Part I: Poduromorpha. In: Kristensen N.P., Michelsen V. (Eds), Fauna entomologica Scandinavica, vol. 35, Brill.Google Scholar
  17. Gutiérrez-López, M., Salmon, S., & Trigo, D. (2011). Movement response of Collembola to the excreta of two earthworm species: importance of ammonium content and nitrogen forms. Soil Biology & Biochemistry, 43, 55–62.CrossRefGoogle Scholar
  18. Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., Anderson, N. H., Cline, S. P., Aumen, N. G., Sedell, J. R., Lienkaemper, G. W., Cromack, K., Jr., & Cummins, K. W. (1986). Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 15, 133–302.CrossRefGoogle Scholar
  19. Heděnec, P., Radochová, P., Nováková, A., Kaneda, S., & Frouz, J. (2013). Grazing preference and utilization of soil fungi by Folsomia candida (Isotomidae:Collembola). European Journal of Soil Biology, 55, 66–70.CrossRefGoogle Scholar
  20. Hofmeister, J., Oulehle, F., Krám, P., & Hruška, J. (2008). Loss of nutrients due to litter raking compared to the effect of acidic deposition in two spruce stands, Czech Republic. Biogeochemistry, 88, 139–151.CrossRefGoogle Scholar
  21. Hopkin, S. P. (1997). Biology of the springtails. Oxford: Oxford University Press.Google Scholar
  22. Kaňa, J., Tahovská, K., Kopáček, J., & Šantrůčková, H. (2015). Excess of organic carbon in mountain spruce forest soils after bark beetle outbreak altered microbial N transformations and mitigated N-saturation. PLoS One, 10(7), e0134165.  https://doi.org/10.1371/journal.pone.0134165.CrossRefGoogle Scholar
  23. Kaňa, J., Kopáček, J., Tahovská, K., & Šantrůčková, H. (2019). Tree dieback and related changes in nitrogen dynamics modify the concentrations and proportions of cations on soil sorption complex. Ecological Indicators, 97, 319–328.CrossRefGoogle Scholar
  24. Kanters, C., Anderson, I. C., & Johnson, D. (2015). Chewing up the wood-wide web: selective grazing on ectomycorrhizal fungi by Collembola. Forests, 6, 2560–2570.CrossRefGoogle Scholar
  25. Kopáček, J., & Hejzlar, J. (1993). Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. International Journal of Environmental Analytical Chemistry, 53, 173–183.CrossRefGoogle Scholar
  26. Kopáček, J., Kaňa, J., Šantrůčková, H., Picek, T., & Stuchlík, E. (2004). Chemical and biochemical characteristics of alpine soils in the Tatra Mountains and their correlation with lake water quality. Water, Air, & Soil Pollution, 153, 307–327.CrossRefGoogle Scholar
  27. Kopáček, J., Fluksová, H., Hejzlar, J., Kaňa, J., Porcal, P., & Turek, J. (2017). Changes in surface water chemistry caused by natural forest dieback in an unmanaged mountain catchment. Science of the Total Environment, 584-585, 971–981.CrossRefGoogle Scholar
  28. Marshall, V. G., Setälä, H., & Trofymow, J. A. (1998). Collembolan succession and stump decomposition in Douglas-fir. In J. A. Trofymow & A. MacKinnon (Eds.), Proceedings of a workshop on Structure, Process, and Diversity in Successional Forests of Coastal British Columbia, February 17-19, 1998 (Vol. 72, pp. 84–85). Victoria, British Columbia: Northwest Science.Google Scholar
  29. Martínez, Á. T., Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F., Martínez, M. J., Gutiérrez, A., & del Río, J. C. (2005). Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8, 195–204.Google Scholar
  30. Murphy, J., & Riley, J. P. (1962). A modified single–solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.CrossRefGoogle Scholar
  31. Neher, D. A., Weicht, T. R., & Barberchesck, M. E. (2012). Linking invertebrate communities to decomposition rate and nitrogen availability in pine forest soils. Applied Soil Ecology, 54, 14–23.CrossRefGoogle Scholar
  32. Palviainen, M., & Finér, L. (2015). Decomposition and nutrient release from Norway spruce coarse roots and stumps – a 40-year chronosequence study. Forest Ecology and Management, 385, 1–11.CrossRefGoogle Scholar
  33. Pomorski, R. J. (1998). Onychiurinae of Poland (Collembola: Onychiuridae). Wrocław: BS.Google Scholar
  34. Ponge, J. F. (2000). Vertical distribution of Collembola (Hexapoda) and their food resources in organic horizons of beech forests. Biology and Fertility of Soils, 32, 508–522.CrossRefGoogle Scholar
  35. Potapov, M. B. (2001). Isotomidae. In W. Dunger (Ed.), Synopses on Palaearctic Collembola (Vol. 3). Görlitz: Abhandlungen und Berichte des Naturkundemuseums.Google Scholar
  36. Pouska, V., Lepš, J., Svoboda, M., & Lepšová, A. (2011). How do log characteristics influence the occurrence of wood fungi in a mountain spruce forest? Fungal Ecology, 4, 201–209.CrossRefGoogle Scholar
  37. Pouska, V., Macek, P., & Zíbarová, L. (2016). The relation of fungal communities to wood microclimate in a mountain spruce forest. Fungal Ecology, 21, 1–9.CrossRefGoogle Scholar
  38. Rotheray, T. D., Boddy, L., & Hefin, J. T. (2009). Collembola foraging responses to interacting fungi. Ecological Entomology, 34, 125–132.CrossRefGoogle Scholar
  39. Salmon, S., & Ponge, J.-F. (2001). Earthworm excreta attract soil springtails: laboratory experiments on Heteromurus nitidus (Collembola: Entomobryidae). Soil Biology and Biochemistry, 33, 1959–1969.CrossRefGoogle Scholar
  40. Scheu, S., & Simmerling, F. (2004). Growth and reproduction of fungal feeding Collembola as affected by fungal species, melanin and mixed diets. Oecologia, 139, 347–353.CrossRefGoogle Scholar
  41. Setälä, H., & Marshall, V. G. (1994). Stumps as a habitat for Collembola during succession from clear-cuts to oldgrowth Douglas-fir forests. Pedobiologia, 38, 307–326.Google Scholar
  42. Setälä, H., Marshall, V. G., & Trofymow, J. A. (1994). Influence of micro- and macro-habitat factors on collembolan communities in Douglas-fir stumps during forest succession. Applied Soil Ecology, 2, 227–242.CrossRefGoogle Scholar
  43. Shorohova, E., & Kapitsa, E. (2016). The decomposition rate of non-stem components of coarse woody debris (CWD) in European boreal forests mainly depends on site moisture and tree species. European Journal of Forest Research, 135, 593–606.CrossRefGoogle Scholar
  44. Siddiky, M. R. K., Schaller, J., Caruso, T., & Rillig, M. C. (2012). Arbuscular mycorrhizal fungi and collembola non-additively increase soil aggregation. Soil Biology & Biochemistry, 47, 93–99.CrossRefGoogle Scholar
  45. Stokland, J. N., Siitonen, J., & Jonsson, B. G. (2012). Biodiversity in dead wood. New York: Cambridge University Press.CrossRefGoogle Scholar
  46. Svoboda, M. (2003a). Biological activity, nitrogen dynamics, and chemical characteristics of forest soils in the Šumava National Park. Journal of Forest Science, 49, 302–312.CrossRefGoogle Scholar
  47. Svoboda, M. (2003b). Tree layer disintegration and its impact on understory vegetation and humus forms state in the Šumava National Park. Silva Gabreta, 9, 201–216.Google Scholar
  48. Svoboda, M., & Pouska, V. (2008). Structure of a Central-European mountain spruce old-growth forest with respect to historical development. Forest Ecology and Management, 255, 2177–2188.CrossRefGoogle Scholar
  49. Svoboda, M., Janda, P., Nagel, T. A., Fraver, S., Rejzek, J., & Bače, R. (2012). Disturbance history of an old-growth sub-alpine Picea abies stand in the Bohemian Forest, Czech Republic. Journal of Vegetation Science, 23, 86–97.CrossRefGoogle Scholar
  50. ter Braak, C. J. F., & Šmilauer, P. (2012). Canoco reference manual and user’s guide: software for ordination, version 5.0. Ithaca: Microcomputer Power.Google Scholar
  51. Thibaud, J.-M., Schulz, H.-J., & da Gama Assalino, M. M. (2004). Hypogastruridae. In W. Dunger (Ed.), Synopses on Palaearctic Collembola (Vol. 4). Görlitz: Abhandlungen und Berichte des Naturkundemuseums.Google Scholar
  52. Thomas, G. W. (1982). Exchangeable cations. In A. L. Page et al. (Eds.), Methods of soil analysis, Part 2 (2nd ed.). Madison, Wisconsin: ASA and SSSA.Google Scholar
  53. TIBCO Software Inc. (2017). Statistica (data analysis software system), version 13. http://statistica.io.
  54. Tordoff, G. M., Boddy, L., & Hefin, J. T. (2008). Species-specific impacts of collembola grazing on fungal foraging ecology. Soil Biology & Biochemistry, 40, 434–442.CrossRefGoogle Scholar
  55. Wicklow, D. T., & Söderstrom, B. E. (Eds.). (1997). The Mycota IV, Environmental and microbial relationships. Berlin: Springer.Google Scholar
  56. Yelle, D. J., Wei, D., Ralph, J., & Hammel, K. E. (2011). Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta. Environmental Microbiology, 13, 1091–1100.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Biology Centre CASInstitute of Soil BiologyČeské BudějoviceCzech Republic
  2. 2.Biology Centre CASInstitute of HydrobiologyČeské BudějoviceCzech Republic
  3. 3.Department of Ecosystem Biology, Faculty of ScienceUniversity of South Bohemia in České BudějoviceČeské BudějoviceCzech Republic
  4. 4.Faculty of Forestry and Wood SciencesCzech University of Life Sciences PraguePraha 6 – SuchdolCzech Republic

Personalised recommendations