Advertisement

Interspecies comparison of three moss species (Hylocomium splendens, Pleurozium schreberi, and Isothecium stoloniferum) as biomonitors of trace element deposition

  • Phaedra CowdenEmail author
  • Julian Aherne
Article
  • 29 Downloads

Abstract

Biomonitoring with mosses is a common method widely used to assess the spatial and temporal trends of atmospheric deposition in Europe since its introduction in the 1970s. Based on previous investigations, certain moss species provide the most accurate reflection of atmospheric deposition. However, sampling of just one species across large areas can pose a challenge, therefore the ability to use multiple moss species interchangeably is integral to an effective moss biomonitoring survey. In this study, biomonitoring abilities of two common species (Hylocomium splendens [Hs] and Pleurozium schreberi [Ps]) were compared to a potential new biomonitoring species endemic to North America (Isothecium stoloniferum [Is]). Thirteen metal concentrations were analyzed (Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, and Pb) in moss tissue from 20 sites with co-located species (Ps/Hs, Is/Hs) Five metals (Al, V, Fe, Ni, and Pb) showed significant and strong correlations (Spearman correlation, r ≥ 0.7 α = 0.05) for all three species, reflecting the established deposition gradient in the region. Furthermore, there was no significant difference in observations (and moderate correlation) for Cr, which suggests that all species exhibited similar uptake abilities for these six metals (Al, V, Cr, Fe, Ni, and Pb). Four metals (Co, As, Se, and Cd) exhibited concentrations below detection at a number of sites, which may have influenced the assessment of interspecies relationships. It is recommended that interspecies calibration be carried out under all surveys that employ multiple moss species.

Keywords

Bryophytes Kitimat British Columbia Large-point source emissions Interspecies calibration 

Notes

Acknowledgements

The authors would like to gratefully acknowledge Patrick Williston for provision of moss samples and support with species identification and Emily Olmstead for fieldwork assistance. Also, thanks to Eric Sager, Richard Caners, and Shaun Watmough for feedback on earlier versions of this manuscript. The authors would like to thank Rio Tinto BC Works for financial, logistical, and safety support.

Funding information

This research was undertaken, in part, thanks to funding from an NSERC Discovery grant (JA), and an NSERC Canada Graduate Scholarship (PC).

Supplementary material

10661_2019_7354_MOESM1_ESM.docx (119 kb)
ESM 1 (DOCX 118 kb)

References

  1. Aboal, J. R., Fernández, J. A., Boquete, M. T., & Carballeira, A. (2010). Is it possible to estimate atmospheric deposition of heavy metals by analysis of terrestrial mosses? The Science of the Total Environment, 408(24), 6291–6297.CrossRefGoogle Scholar
  2. Aboal, J. R., Boquete, M. T., Carballeira, A., Casanova, A., Deben, S., & Fernandez, J. A. (2017). Quantification of the overall measurement uncertainty associated with the passive moss biomonitoring technique: sample collection and processing. Environmental Pollution, 224, 235–242.  https://doi.org/10.1016/j.envpol.2017.01.084.CrossRefGoogle Scholar
  3. Berg, T., & Steinnes, E. (1997). Use of mosses (Hylocomium splendens and Pleurozium schreberi) as biomonitors of heavy metal deposition: From relative to absolute deposition values. Environmental Pollution, 98(1), 61–71.  https://doi.org/10.1016/S0269-7491(97)00103-6.CrossRefGoogle Scholar
  4. Boquete, M. T., Fernández, J. A., Aboal, J. R., & Carballeira, A. (2011). Are terrestrial mosses good biomonitors of atmospheric deposition of Mn? Atmospheric Environment, 45(16), 2704–2710.CrossRefGoogle Scholar
  5. Boquete, M. T., Fernandez, J. A., Carballeira, A., & Aboal, J. R. (2013). Assessing the tolerance of the terrestrial moss Pseudoscleropodium purum to high levels of atmospheric heavy metals: a reciprocal transplant study. The Science of the Total Environment, 461–462, 552–559.CrossRefGoogle Scholar
  6. Boquete, M. T., Aboal, J. R., Carballeira, A., & Fernandez, J. A. (2014). Effect of age on the heavy metal concentration in segments of Pseudoscleropodium purum and the biomonitoring of atmospheric deposition of metals. Atmospheric Environment, 86, 28–34.CrossRefGoogle Scholar
  7. Brown, D., & Bates, J. (1990). Bryophytes and nutrient cycling. Botanical Journal of the Linnean Society, 104, 129–147.CrossRefGoogle Scholar
  8. Brown, D., & Brumelis, G. (1996). A biomonitoring method using the cellular distribution of metals in moss. The Science of the Total Environment, 187, 153–161.CrossRefGoogle Scholar
  9. Caruso, J. A., Zhang, K., Schroeck, N. J., McCoy, B., & McElmurry, S. P. (2015). Petroleum coke in the urban environment: a review of potential health effects. International Journal of Environmental Research and Public Health, 12(6), 6218–6231.  https://doi.org/10.3390/ijerph120606218.CrossRefGoogle Scholar
  10. Castello, M. (2007). A comparison between two moss species used as transplants for airborne trace element biomonitoring in NE Italy. Environmental Monitoring and Assessment, 133(1), 267–276.CrossRefGoogle Scholar
  11. Cowden, P., & Aherne, J. (2019). Assessment of atmospheric metal deposition by moss biomonitoring in a region under the influence of a long standing active aluminium smelter. Atmospheric Environment, 201, 84–91.CrossRefGoogle Scholar
  12. Cowden, P., Liang, T., & Aherne, J. (2015). Mosses as bioindicators of air pollution along an urban–agricultural transect in the Credit River Watershed, Southern Ontario, Canada. Annali Di Botanica, 5, 63–70.  https://doi.org/10.4462/annbotrm-13059.CrossRefGoogle Scholar
  13. District of Kitimat. (2013). Official Community Plan. Stantec consult. Gr.: 76. http://www.kitimat.ca/assets/Business/PDFs/official-community-plan-2008.pdf. Accessed 11 September 2017.
  14. Dolegowska, S., Migaszewski, Z. M., & Michalik, A. (2013). Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. As trace element bioindicators: statistical comparison of bioaccumulative properties. Journal of Environmental Sciences, 25(2), 340–347.CrossRefGoogle Scholar
  15. Ecological Stratification Working Group (ESWG). (1995). A National Ecological Framework for Canada. Ecological Stratification Working Group. http://sis.agr.gc.ca/cansis/publications/ecostrat/cad_report.pdf.
  16. Environment Canada. (2017). Canadian Climate Normals: 1981-2010. climate.weather.gc/climate_normals. Accessed 1 Oct 2017.
  17. Galsomies, L., Ayrault, S., Carrot, F., Deschamps, C., & Letrouit-Galinou, M. A. (1999). Atmospheric metal deposition in France: initial results on moss calibration from the 1996 biomonitoring. The Science of the Total Environment, 232, 39–47.CrossRefGoogle Scholar
  18. Galsomiès, L., Ayrault, S., Carrot, F., Deschamps, C., & Letrouit-Galinou, M. A. (2003). Interspecies calibration in mosses at regional scale - heavy metal and trace elements results from Ile-de-France. Atmospheric Environment, 37(2), 241–251.  https://doi.org/10.1016/S1352-2310(02)00831-2.CrossRefGoogle Scholar
  19. Ghosh, M., Benerjee, P., & Ray, H. (2014). Environmental pollution due to gaseous emissions during non-ferrous extraction processes. Russian Journal of Non-Ferrous Metals, 55(3), 263–269.CrossRefGoogle Scholar
  20. Goffinet, B., & Shaw, A. (2000). Bryophyte biology. Cambridge: Cambridge University Press.Google Scholar
  21. Halleraker, J. H., Reimann, C., De Caritat, P., Finne, T. E., Kashulina, G., Niskaavaara, H., & Bogatyrev, I. (1998). Reliability of moss (Hylocomium splendens and Pleurozium schreberi) as a bioindicator of atmospheric chemistry in the Barents region: interspecies and field duplicate variability. The Science of the Total Environment, 218(2–3), 123–139.  https://doi.org/10.1016/S0048-9697(98)00205-8.CrossRefGoogle Scholar
  22. Harmens, H., Norris, D. A., Steinnes, E., Kubin, E., Piispanen, J., Alber, R., Aleksiayenak, Y., Blum, O., Coskun, M., Dam, M., De Temmerman, L., Fernandez, J. A., Frolova, M., Frontasyeva, M., González-Miqueo, L., Grodzinska, K., Jeran, Z., Korzekwa, S., Krmar, M., Kvietkus, K., Leblond, S., Liiv, S., Magnusson, S. H., Mankovska, B., Pesch, R., Ruhling, A., Santamaría, J. M., Schröder, W., Spiric, Z., Suchara, I., Thoni, L., Urumov, V., Yurukova, L., & Zechmeister, H. G. (2010). Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. Environmental Pollution, 158, 3144–3156.CrossRefGoogle Scholar
  23. Harmens, H., Norris, D. A., Cooper, D. M., Mills, G., Steinnes, E., Kubin, E., Thöni, L., Aboal, J. R., Alber, R., Carballeira, A., Cokun, M., De Temmerman, L., Frolova, M., González-Miqueo, L., Jeran, Z., Leblond, S., Liiv, S., Maňkovská, B., Pesch, R., Poikolainen, J., Rühling, A., Santamaria, J. M., Simoni, P., Schröder, W., Suchara, I., Yurukova, L., & Zechmeister, H. G. (2011). Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe. Environmental Pollution, 159(10), 2852–2860.  https://doi.org/10.1016/j.envpol.2011.04.041.CrossRefGoogle Scholar
  24. Harmens, H., Norris, D. A., Sharps, K., Mills, G., Alber, R., Aleksiayenak, Y., Blum, O., Cucu-Man, S. M., Dam, M., De Temmerman, L., Ene, A., Fernández, J. A., Martinez-Abaigar, J., Frontasyeva, M., Godzik, B., Jeran, Z., Lazo, P., Leblond, S., Liiv, S., Magnússon, S. H., Maňkovská, B., Karlsson, G. P., Piispanen, J., Poikolainen, J., Santamaria, J. M., Skudnik, M., Spiric, Z., Stafilov, T., Steinnes, E., Stihi, C., Suchara, I., Thöni, L., Todoran, R., Yurukova, L., & Zechmeister, H. G. (2015). Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environmental Pollution, 200(March 2016), 93–104.  https://doi.org/10.1016/j.envpol.2015.01.036.CrossRefGoogle Scholar
  25. ICP Vegetation. (2015). Monitoring of atmospheric deposition of heavy metals, nitrogen and POPs in Europe using bryophytes.Google Scholar
  26. Izquieta-Rojano, S., Elustondo, D., Ederra, A., Lasheras, E., Santamaría, C., & Santamaría, J. M. (2016). Pleurochaete squarrosa (Brid.) Lindb. As an alternative moss species for biomonitoring surveys of heavy metal, nitrogen deposition and δ15N signatures in a Mediterranean area. Ecological Indicators, 60(June), 1221–1228.  https://doi.org/10.1016/j.ecolind.2015.09.023.CrossRefGoogle Scholar
  27. McKnight, K., Rohrer, J., & Perdrizet, W. (2013). Common mosses of the Northeast and Appalachians. Princeton: Princeton University Press.Google Scholar
  28. Migaszewski, Z. M., Galuszka, A., Grock, J., Lemothe, P., & Dolegowska, S. (2009). Interspecies and interregional comparison of the chemistry of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. From Poland and Alaska. Atmospheric Environment, 43(7), 1464–1473.CrossRefGoogle Scholar
  29. Olmstead, E., & Aherne, J. (2019). Are tissue concentrations of Hylocomium splendens a good predictor of nitrogen deposition? Atmospheric Pollution Research, 10, 80–87.CrossRefGoogle Scholar
  30. Pott, U., & Turpin, D. H. (1996). Changes in atmospheric trace element deposition in the Fraser Valley, B.C., Canada from 1960 to 1993 measured by moss monitoring with Isothecium stoloniferum. Canadian Journal of Botany, 74(8), 1345–1353 http://scilib.univ.kiev.ua/article.php?946354.CrossRefGoogle Scholar
  31. Pott, U., & Turpin, D. H. (1998). Assessment of atmospheric heavy metals by moss monitoring with Isothecium stoloniferum Brid. In the Fraser Valley, B.C., Canada. Water, Air, and Soil Pollution, 101(1–4), 25–44.  https://doi.org/10.1023/A:1004916110857. CrossRefGoogle Scholar
  32. Raymond, B., Bassingthwaighte, T., & Shaw, D. (2010). Measuring nitrogen and sulphur deposition in the Georgia Basin, British Columbia, using lichens and moss. Journal of Limnology, 69(Supplementary 1), 22–32.CrossRefGoogle Scholar
  33. Reimann, C., Niskavaara, H., Kashulina, G., Filzmoser, P., Boyd, R., Volden, T., Tomilina, O., & Bogatyrev, I. (2001). Critical remarks on the use of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) for monitoring of airborne pollution. Environmental Pollution, 113(1), 41–57.  https://doi.org/10.1016/S0269-7491(00)00156-1.CrossRefGoogle Scholar
  34. Ross, H. B. (1990). On the use of mosses (Hylocomium splendens and Pleurozium schreberi) for estimating atmospheric trace metals deposition. Water, Air, and Soil Pollution, 50, 63–76.CrossRefGoogle Scholar
  35. Ruhling, A., & Tyler, G. (1970). Sorption and retention of heavy metals in the woodland moss Hylocomium splendens (Hedw.). Oikos, 21, 92–97.CrossRefGoogle Scholar
  36. Rumyantsev, I., Dunaev, A., Frontasyeva, M., & Ostrovnaya, T. (2013). Interspecies comparison of elemental content in moss from Ivanovo region determined by NAA and AAS. In International Seminar of Interactions of Neutrons with Nuclei. Google Scholar
  37. Schofield, W. (1985). Some common mosses of British Columbia. Royal British Columbia University Press.Google Scholar
  38. Shotyk, W., Bicalho, B., Cuss, C. W., Duke, M. J. M., Noernberg, T., Pelletier, R., Steinnes, E., & Zaccone, C. (2016). Dust is the dominant source of “heavy metals” to peat moss (Sphagnum fuscum) in the bogs of the Athabasca Bituminous Sands region of northern Alberta. Environment International, 92–93(July), 494–506.  https://doi.org/10.1016/j.envint.2016.03.018.CrossRefGoogle Scholar
  39. Steinnes, E. (2001). Use of mosses to monitor trace element deposition from the atmosphere: Why and how. In Radionuclides and heavy metals in environment.Google Scholar
  40. Steinnes, E., Rühling, Å., Lippo, H., & Mäkinen, A. (1997). Reference materials for large-scale metal deposition surveys. Accreditation and Quality Assurance, 2(5), 243–249.  https://doi.org/10.1007/s007690050141.
  41. Thöni, L., Schnyder, N., & Krieg, F. (1996). Comparison of metal concentrations in three species of mosses and metal freights in bulk precipitations. Analytical and Bioanalytical Chemistry, 354(5–6), 703–708.  https://doi.org/10.1007/s0021663540703.CrossRefGoogle Scholar
  42. US Environmental Protection Agency. (1984). Locating and estimating air emissions from sources of nickel. 187. https://www3.epa.gov/ttnchie1/le/nickel.pdf.
  43. Varela, Z., Aboal, J. R., Carballeira, A., & Fernández, J. A. (2014). Use of a moss biomonitoring method to compile emission inventories for small-scale industries. Journal of Hazardous Materials, 275C, 72–78.CrossRefGoogle Scholar
  44. Wilkie, D., & LaFarge, C. (2011). Bryophytes as heavy metal biomonitors in the Canadian High Arctic. Arctic Antarctic and Alpine Research, 43(2), 289–300.CrossRefGoogle Scholar
  45. Wilkins, K., & Aherne, J. (2015). Isothecium myosuroides and Thuidium tamariscinum mosses as bioindicators of nitrogen and heavy metal deposition in Atlantic oak woodlands. Annali Di Botanica, 5, 71–78.Google Scholar
  46. Wolterbeek, B. (2002). Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environmental Pollution, 120(1), 11–21.  https://doi.org/10.1016/S0269-7491(02)00124-0.CrossRefGoogle Scholar
  47. Wolterbeek, B., Kuik, P., & Verburg, T. G. (1995). Moss interspecies comparisons in trace element concentrations. Environmental Monitoring and Assessment, 35, 263–286.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Environmental and Life SciencesTrent UniversityPeterboroughCanada

Personalised recommendations