Design of a sustainable development process between phytoremediation and production of bioethanol with Eichhornia crassipes

  • Uriel Fernando Carreño SayagoEmail author


Eichhornia crassipes is considered a problem in different aquatic ecosystems, due to its abundance it could become a solution to design and build economic and efficient treatment plants, and especially for the production of biofuels such as bioethanol. The objective of this research is to design and implement a process of sustainable development between phytoremediation and the production of bioethanol with E. crassipes, evaluating the incidence of chromium adhered to the biomass of this plant in the production of bioethanol. A system was installed to evaluate the phytoremediation with E. crassipes with water loaded with chromium, determining the effectiveness of this plant to eliminate this heavy metal even if it is alive in a body of water. After this process, we proceeded to take the biomass loaded with chromium to the bioreactors to evaluate the production of bioethanol, evaluating three types of biomass, one without chromium adhered and the other two with chromium adhered to the structure of its plant. There was a 25% decrease in the ethanol production of E. crassipes due to the presence of chromium. Concluding that the biomass of E. crassipes could be used totally for phytoremediation processes of waters contaminated with heavy metals and later use this biomass for the production of bioethanol, finding a sustainable system to be used on a larger scale.


Biomass Bioremediation Bioenergy Wastewater 



  1. Ammar, N. S., Elhaes, H., Ibrahim, H. S., & Ibrahim, M. A. (2014). A novel structure for removal of pollutants from wastewater. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121, 216–223.CrossRefGoogle Scholar
  2. Arenas, O. R., Montes, A. C., Tapia, A. R., Hernández, A. T., Cortés, G. L., & Barros, O. A. V. E. (2018). Evaluation of aquatic lily (eichhornia crassipes) and agricultural wastes for production of oyster mushroom. Tropical and Subtropical Agroecosystems, 21(2).Google Scholar
  3. Atehortúa, E., & Gartner, C. (2003). Preliminary studies of Eichhornia crassipes dry biomass for lead and chromium removal from waters. Revista Colombiana de Materiales, 5.Google Scholar
  4. Cruz Barbosa, E. (2015). Identificación y valoración socioecológica de bienes y servicios ecosistémicos del Humedal La Vaca (Bogotá, Cundinamarca).Google Scholar
  5. Cuervo, L., Folch, J. L., & Quiroz, R. E. (2009). Lignocelulosa como fuente de azúcares para la producción de etanol. BioTecnología, 13(3), 11–25.Google Scholar
  6. Eshtiaghi, M. N., Yoswathana, N., Kuldiloke, J., & Ebadi, A. G. (2012). Preliminary study for bioconversion of water hyacinth (Eichhornia crassipes) to bioethanol. African Journal of Biotechnology, 11(21), 4921–4928.CrossRefGoogle Scholar
  7. Feng, W., Xiao, K., Zhou, W., Zhu, D., Zhou, Y., Yuan, Y., Xiao, N., Wan, X., Hua, Y., & Zhao, J. (2017). Analysis of utilization technologies for Eichhornia crassipes biomass harvested after restoration of wastewater. Bioresource Technology, 223, 287–295.CrossRefGoogle Scholar
  8. Ganguly, A., Chatterjee, P. K., & Dey, A. (2012). Studies on ethanol production from water hyacinth—a review. Renewable and Sustainable Energy Reviews, 16(1), 966–972.CrossRefGoogle Scholar
  9. Ibrahim, H. S., Ammar, N. S., Soylak, M., & Ibrahim, M. (2012). Removal of Cd (II) and Pb (II) from aqueous solution using dried water hyacinth as a biosorbent. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 96, 413–420.CrossRefGoogle Scholar
  10. Isarankura-Na-Ayudhya, C., Tantimongcolwat, T., Kongpanpee, T., Prabkate, P., & Prachayasittikul, V. (2007). Appropriate technology for the bioconversion of water hyacinth (Eichhornia crassipes) to liquid ethanol. EXCLI Journal, 6, 167–176.Google Scholar
  11. Kasturiarachchi, J. C., Jayaweera, M. W., Wijeyekoon, S. L. T., Hirimburegama, K., & Fernando, P. U. D. (2014). Removal of nutrients (N and P) and heavy metals (Fe, Al, Mn and Ni) from industrial wastewaters by phytoremediation using water hyacinth (Eichhornia crassipes) under different nutritional conditions. University of Moratuwa. Sri Lanka, 11, 111.Google Scholar
  12. Kouwanou, C. S., Dossa, C. P. A., Adjou, E. S., Tchobo, F. P., Bonou, C., Soumanou, M. M., & Sohounhloué, D. C. (2018). Physicochemical and enzymatic hydrolysis of Eichhornia crassipes for the production of second-generation bioethanol. American Journal of Chemistry, 8(2), 41–44.Google Scholar
  13. Kuldiloke, J., Eshtiaghi, M. N., Peeploy, P., & Amornrattanapong, P. (2010). Bioconversion of water hyacinth (Eichhornia crassipes) to bioethanol. Journal of ISSAAS [International Society for Southeast Asian Agricultural Sciences](Philippines), 16, 156.Google Scholar
  14. Lee, J., Park, K. Y., Cho, J., & Kim, J. Y. (2018). Releasing characteristics and fate of heavy metals from phytoremediation crop residues during anaerobic digestion. Chemosphere, 191, 520–526.CrossRefGoogle Scholar
  15. Lin, S., Yang, H., Na, Z., & Lin, K. (2018). A novel biodegradable arsenic adsorbent by immobilization of iron oxyhydroxide (FeOOH) on the root powder of long-root Eichhornia crassipes. Chemosphere, 192, 258–266.CrossRefGoogle Scholar
  16. Magdum, S. M., More, S., & Nadaf, A. A. (2012). Biochemical conversion of acid pretreatment water hyacinth (eichonnia crassipes) to alcohol using pichia stipitis NCIM 3497. International Journal of Advanced Biotechnology and Research, 3(2), 585–590.Google Scholar
  17. Martínez, C; Torres M, & Cruz G. (2013). Evaluación de la cinética de adsorción de zn2+ y cd2+ a partir de soluciones unitarias y binarias por raíces de eichhornia crassipes y typha latifolia. 4(2), 1–14.Google Scholar
  18. Mohammed, A. B., Omran, A. R., Baiee, M. A., & Salman, J. M. (2018). Biosorption of Safranin-O from aqueous solution by Nile Rose plant (Eichhornia crassipes). Baghdad Science Journal, 15(1), 26–30.CrossRefGoogle Scholar
  19. Nigam, J. N. (2002). Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose–fermenting yeast. Journal of Biotechnology, 97(2), 107–116.CrossRefGoogle Scholar
  20. Pattra, S., & Sittijunda, S. (2015). Optimization of factors affecting acid hydrolysis of water hyacinth stem (Eichhornia Crassipes) for bio-hydrogen production. Energy Procedia, 79, 833–837.CrossRefGoogle Scholar
  21. Pizarro, R., Flores, J. P., Tapia, J., Valdés-Pineda, R., González, D., Morales, C., et al. (2016). Especies forestales para la recuperación de suelos contaminados con cobre debido a actividades mineras. Revista Chapingo serie ciencias forestales y del ambiente, 22(1), 29–43.CrossRefGoogle Scholar
  22. Porous, M., Dhahiyat, Siregar, H., & Salem, F. (2012). Studies on the uses of water hyacinth as biogas energy resource in the dam of curag (west java). In: Proceedings of the international conference on water hyacinth, Hyderabad. Chemical composition of the plant and water from different habitats. Indian Veterinary Journal, 68(9), 833–837 Renewable and Sustainable Energy Reviews, Volume 66, 751–774.Google Scholar
  23. Rani, N., Singh, B., & Shimrah, T. (2017). Chromium (VI) removal from aqueous solutions using Eichhornia as an adsorbent. Journal of Water Reuse and Desalination, 7(4), 461–467.CrossRefGoogle Scholar
  24. Sayago, U. F. C. (2016). Diseño y evaluación de un biosistema de tratamiento a escala piloto de aguas de curtiembres a través de la Eichhornia crassipes. Revista Colombiana de Biotecnología, 18(2), 74–81.CrossRefGoogle Scholar
  25. Ting, W. H. T., Tan, I. A. W., Salleh, S. F., & Wahab, N. A. (2018). Application of water hyacinth (Eichhornia crassipes) for phytoremediation of ammoniacal nitrogen: a review. Journal of water process engineering, 22, 239–249.CrossRefGoogle Scholar
  26. Torres M. (2009). Estudio del aprovechamiento del lechuguin, Eichhornia crassipes, del embalse de la represa Daniel Palacios como biosorbente de metales pesados en el tratamiento de aguas residuales. Tesis de Grado. Universidad Politécnica Salesiana.Google Scholar
  27. Vásquez, B. (2012). El tratamiento de los desechos líquidos de la zona de tintura en las flores para la exportación con Eichhornia crassipes (Buchón de Agua). Revista Lasallista de Investigación, 1(2).Google Scholar
  28. Wanyonyi, W. C., Onyari, J. M., & Shiundu, P. M. (2014). Adsorption of Congo red dye from aqueous solutions using roots of Eichhornia crassipes: kinetic and equilibrium studies. Energy Procedia, 50, 862–869.CrossRefGoogle Scholar
  29. Yang, X., Chen, S., & Zhang, R. (2014). Utilization of two invasive free-floating aquatic plants (Pistia stratiotes and Eichhornia crassipes) as sorbents for oil removal. Environmental Science and Pollution Research, 21(1), 781–786.CrossRefGoogle Scholar
  30. Zabed, H., Sahu, J. N., Boyce, A. N., & Faruq, G. (2016). Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renewable and Sustainable Energy Reviews, 66, 751–774.CrossRefGoogle Scholar
  31. Zimmels, F. M. (2005). Application of Eichhornia crassipes and Pistia stratiotes for treatment of urban sewage in Israel. Journal of Environmental Management, 81, 4.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fundación universitaria los LibertadoresBogotáColombia

Personalised recommendations