Advertisement

Flood hazard mapping using geospatial techniques and satellite images—a case study of coastal district of Tamil Nadu

  • P. ThirumuruganEmail author
  • Muthaia Krishnaveni
Article
  • 105 Downloads

Abstract

In recent years, extreme rainfall events have resulted in several devastating floods especially in the east coast of Tamil Nadu, India. The main aim of this study is to identify the flood hazard zones in Cuddalore district by integrating spatial distribution of extreme rainfall events, slope, drainage density, soil, and geomorphology. Moderate Resolution Imaging Spectroradiometer satellite data was used to delineate the flood inundation area for the flood event which occurred in 2010 to validate the derived flood hazard zones by using geographical information system (GIS) and satellite images. The ground truth points were collected from the field to validate flood hazard zones, and it was identified that 92% of results were matched with hazard zones. Highly vulnerable blocks including Cuddalore, Kattumannarkoil, Keerapalayam, Kumaratchi, Kurinjipadi, Melbhunagiri, and Parangipettai were identified in Cuddalore district. From this study, it was also identified that nearly 45% of the total area of 3678 km2 were inundated during the flood time. This present study will be a very useful tool and a resource for the policy planners and coastal planners to make effective decisions towards mitigation measures in flood-prone areas in the coastal districts.

Keywords

Rainfall events Spatial mapping Weighted overlay analysis MODIS and GIS 

Notes

References

  1. Amarnath, G. (2013). An algorithm for rapid flood inundation mapping from optical data using a reflectance differencing technique. Journal of Flood Risk Management, 7, 239, 250.Google Scholar
  2. Bal, P. K., Ramachandran, A., Geetha, R., Bhaskaran, B., Thirumurugan, P., Indumathi, J., & Jayanthi, N. (2015). Climate change projections for Tamil Nadu deriving high resolution climate data by a downscaling approach using PRECIS. Theoretical and Applied Climatology.  https://doi.org/10.1007/s00704-014-1367-9.
  3. Boettinger, J. L., Ramsey, R. D., Bodily, J. M., Cole, N. J., Kienast-Brown, S., Nield, S. J., Saunders, A. M., & Stum, A. K. (2008). Landsat spectral data for digital soil mapping. In A. E. Hartemink, A. McBratney, & M. L. Mendonça-Santos (Eds.), Digital soil mapping with limited data (pp. 193–202). Berlin: Springer.  https://doi.org/10.1007/978-1-4020-8592-5_16.CrossRefGoogle Scholar
  4. De, U. S., & Dandekar, M. M. (2001). Natural disasters in urban areas. The Deccan Geographer, 39(2), 1–12.Google Scholar
  5. De, U. S., Dube, R. K., & Prakasa, R. G. S. (2005). Extreme weather events over India in last 100 years. Journal of Indian Geophysical Union, 9(3), 173–187.Google Scholar
  6. De, U. S., Singh, G. P., & Rase, D. M. (2013). Urban flooding in recent decades in four mega cities of India. Journal of Indian Geophysical Union, 17(2), 153–165.Google Scholar
  7. DMSG (Disaster Management Support Group). (2001). The use of earth observing satellites for hazard support group, report, NOAA, Department of Commerce, USA.Google Scholar
  8. Forte, F., & Strobl, R. (2006). A methodology using GIS, aerial photos and remote sensing for loss estimation and flood vulnerability analysis in the Supersano-Ruffano-Nociglia Graben, southern Italy. Environmental Geology, 50(4), 581–594.CrossRefGoogle Scholar
  9. Gao, B. C. (1996). NDWI – a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58, 257–266.CrossRefGoogle Scholar
  10. Gao, W., Shen, Q., Zhou, Y., & Li, X. (2018). Analysis of flood inundation in ungauged basins based on multi-source remote sensing data. Environmental Monitoring and Assessment, 190, 129.CrossRefGoogle Scholar
  11. Gesch, D. B. (2009). Analysis of lidar elevation data for improved identification and delineation of lands vulnerable to sea-level rise. Coastal Applications of Airborne LIDAR; Journal of Coastal Research, Special Issue, 53, 49–58.Google Scholar
  12. Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., & Xavier, P. K. (2006). Increasing trend of extreme rain events over India in a warming environment. Science, 314, 1442–1444.CrossRefGoogle Scholar
  13. Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., Blaskovicova, L., Blöschl, G., Borga, M., Dumitrescu, A., Daliakopoulos, I., García, J., Irimescu, A., Kohnova, S., Koutroulis, A., Marchi, L., Matreata, S., Medina, V., Preciso, E., Sempere-Torres, D., Stancalie, G., Szolgay, J., Tsanis, I., Velasco, D., & Viglione, A. (2009). A compilation of data on European flash floods. Journal of Hydrology, 367, 70–78.CrossRefGoogle Scholar
  14. Guhathakurta, P., Sreejith, O. P., & Menon, P. A. (2011). Impact of climate change on extreme rainfall. Journal of Earth System Science 120, 3, 359–373Google Scholar
  15. Harry, W., Michael, H., & Nevil, Q. (2018). Exploring the sensitivity of coastal inundation modelling to DEM vertical error. International Journal of Geographical Information Science, 32, 1172–1193.  https://doi.org/10.1080/13658816.2018.1444165.CrossRefGoogle Scholar
  16. Hennessey, K. J., Gregory, J. M., & Mitchell, J. F. B. (1997). Changes in daily precipitation under enhanced greenhouse conditions. Climate Dynamics, 13, 667–680.CrossRefGoogle Scholar
  17. Horton, R. E. (1945a). Bulletin of Geological Society of America, 50: 275–370.Google Scholar
  18. Horton, R. E. (1945b. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology, Geological Society of America Bulletin, 56, 275–370.Google Scholar
  19. IPCC (Intergovernmental Panel on Climate Change) (2007). Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, U. K.Google Scholar
  20. Irimescu, A., Craciunescu, V., Stancalie, G., & Nertan, A. (2010). Remote sensing and GIS techniques for flood monitoring and damage assessment study case in Romania, 4th international scientific conference BALWOIS, Ohrid, 1–10.Google Scholar
  21. Ishaya, S., Ifatimehin, O. O., & Abaje, I. B. (2009). Mapping flood vulnerable areas in a developing Nigeria. Journal of Sustainable Development in Africa, 11(4), 180–194.Google Scholar
  22. Jarvis, A., Reuter, H., Nelson, A., & Guevara, E. (2008). Hole-filled seamless srtm data v4. International Centre for Tropical Agriculture (CIAT).Google Scholar
  23. Jayasselan, A.,. T. (2004). Drought and floods assessment and monitoring using remote sensing and GIS; proceedings of the training workshop on satellite remote sensing and GIS applications in agricultural meteorology (pp. 291–313). Geneva: World Meteorological Organization.Google Scholar
  24. Jesuraj, C., Murugan, G., Anandhkumar, M., Tamilnadu (Chennai & Cuddalore) had seen its worst floods, International Journal of Novel Research in Physics Chemistry& Mathematics Vol. 3, Issue 1, pp: (16–24), Month: January–April 2016.Google Scholar
  25. Khole, M., & De, U. S. (2001). Socio-economic impacts of natural disasters, WMO. Bulletin, 50, 35–40.Google Scholar
  26. Kudrat, M., Sinha, A. K., & Manchanda, M. L. (2000). Multilevel soil mapping using IRS1C WiFS, LISS III and Pan data. Bangalore: Indian Space Research Organisation.Google Scholar
  27. Maruša, Š., Jonathan, J. G., Celine, L., Pierre-Emmanuel, K., Mitja, B., & Nicholas, C. (2014). Analysis of flash flood parameters and human impacts in the US from 2006 to 2012. Journal of Hydrology, 519, 863–870.CrossRefGoogle Scholar
  28. Mohamed, M. A. (2017). Analysis of digital elevation model and LNDSAT data using geographic information system for soil mapping in urban areas. Natural Resources, 8, 767–787.  https://doi.org/10.4236/nr.2017.812047.CrossRefGoogle Scholar
  29. Nicholls, N., & Wong, K. K. (1990). Dependence of rainfall variability on mean rainfall, latitude, and the southern oscillation. Journal of Climate, 3, 163–170.CrossRefGoogle Scholar
  30. NOAA Coastal services centre1998 Glossary of Coastal Terminology, Publication No. 98–10.5.Google Scholar
  31. Nyarko, B. K. (2002). Application of a rational model in GIS for flood risk assessment in Accra. Journal of Spatial Hydrology, 2(1), 1–14.Google Scholar
  32. Pareta, K. (2004). Hydro-geomorphology of Sagar district (M.P.), a study through remote sensing technique, proceeding in XIX M P. Young Scientist Congress, Madhya Pradesh Council of Science & Technology (MAPCOST), Bhopal.Google Scholar
  33. Qi, S., Brown, D., Tian, Q., Jiang, L., Zhao, T., & Bergen, K. (2009). Inundation extent and flood frequency mapping using LANDSAT imagery and digital elevation models. GIScience & Remote Sensing, 46, 101–127.CrossRefGoogle Scholar
  34. Rajeevan, M., and Bhate, J. (2008). A high resolution daily gridded rainfall data set (1971–2005) for mesoscale meteorological studies, NCC Research Report, No.9. Indian Meteorological Department.Google Scholar
  35. Reuter, H., Nelson, A., & Jarvis, A. (2007). An evaluation of void filling interpolation methods for srtm data. International Journal of Geographical Information Science, 21(9), 983–1008.CrossRefGoogle Scholar
  36. Saxena, S., Purvaja, R., Mary, G., Divya, S., & Ramesh, R. (2012). Coastal hazard mapping in the Cuddalore region, South India. Natural Hazards, 66, 1519–1536.  https://doi.org/10.1007/s11069-012-0362-7.CrossRefGoogle Scholar
  37. Shuhua, Q., Daniel, G., Brown, Q., Tian, L., Jiang, Tingting, Z., & Kathleen, M. B. (2009). Inundation extent and flood frequency mapping using LANDSAT imagery and digital elevation models. GIScience & Remote Sensing, (1), 101–146, 127.Google Scholar
  38. Sinha, R. K. C., & Srivastava, A. K. (2000). Is there any change in extreme events like heavy rainfall? Current Science, 79(2), 155–158.Google Scholar
  39. Smith, L. C. (1997). Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrological Processes, 11, 1427–1439.CrossRefGoogle Scholar
  40. Szynkowska, M. (2015). Flood in Tamil Nadu, India disaster-induced displacement, Retrieved from:http://labos.ulg.ac.be/hugo/wp-content/uploads/sites/38/2017/11/The-State-of-Environmental-Migration-2016-152-172.pdf. Accessed 02 Oct 2017.
  41. Tongdi, J., Alaka, S., Gadgil, & De, U. S. (2008). Recent floods related natural hazards over West coast and Northeast India. Journal of the Indian Geophysical Union, 12(4), 179–182.Google Scholar
  42. UNDP (United Nation Development Programme). (2004). Reducing disaster risk: A challenge for development. United Nations Development Programme (p. 146). New York: Bureau for Crisis Prevention and Recovery.Google Scholar
  43. Younghun, J., Dongkyun, K., Dongwook, K, Munmo, K., & Seung, O, L (2014). Simplified flood inundation mapping based on flood elevation-discharge rating curves using satellite images in gauged watersheds, Water. (6), 1280–1299;  https://doi.org/10.3390/w6051280.
  44. Zhang, Y., Li, C. S., Trettin, C. C., Li, H., & Sun, G. (2002). An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems. Global Biogeochemical Cycles, 16(1), 17.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre for Water ResourcesAnna UniversityChennaiIndia

Personalised recommendations