Radon concentrations in the community groundwater system of South Korea

  • Byong Wook Cho
  • Hyeon Koo Kim
  • Moon Su Kim
  • Jae Hong Hwang
  • Uk Yoon
  • Soo Young Cho
  • Chang Oh ChooEmail author


Groundwater samples were collected from 3818 wells used for the community groundwater system (CGS) in the remote rural areas of South Korea and analyzed to determine radon concentrations. Radon concentrations varied with rock type, ranging from 0.1 to 2393.5 Bq/L with an average of 86.6 Bq/L and a median of 46.4 Bq/L. Among 10 geological units, the median CGS radon concentration was highest (59.6–103.0 Bq/L) in granite, and lower in sedimentary rocks (16.9–21.1 Bq/L) and porous volcanic rocks (17.6 Bq/L), respectively. Of the 3818 samples, 26.1% exceeded the World Health Organization (WHO) radon level limit of 100 Bq/L. The application of the natural radon reduction rate (26.5%) recently suggested by Yun et al. Applied Radiation and Isotopes, 126(1), 23–25 (2017) to the CGS water tank appeared to decrease exceedance of the WHO radon level limit to 20.2%. Because of the high radon concentrations in CGS groundwater in South Korea, the establishment of a radon level limit for drinking water is strongly recommended to ensure the health and safety of the people using CGS water.


Radon Concentration Groundwater Reduction rate Community groundwater system 


Funding information

This work was supported by the National Institute of Environmental Research (NIER-SP2015-386) and the Korea Institute of Geosciences and Mineral Resources (Gp2015-014-2016(2)).


  1. Abdallah, S. M., Habib, R. R., Nuwayhid, R. Y., Chatila, M., & Katul, G. (2007). Radon measurements in well and spring water in Lebanon. Radiation Measurements, 42(2), 298–303.CrossRefGoogle Scholar
  2. Åkerblom, G. & Lindgren, J. (1996). Mapping of ground water radon potential. In Proceedings of IAEA Tech. Committee Meeting, “The advantages and pitfalls of using uranium exploration data and techniques as well as other methods for the preparation of radioelement and radon maps for baseline information in environmental studies and monitoring,” Vienna, May 1996.Google Scholar
  3. Althoyaib, S. S., & El-Taher, A. (2015). Natural radioactivity measurements in groundwater from Al-Jawa, Saudi Arabia. Journal of Radioanalytical and Nuclear Chemistry, 304(2), 547–552.CrossRefGoogle Scholar
  4. Banks, D., Frengstad, B., Midtgard, A. K., Krog, J. R., & Strand, T. (1998). The chemistry of Norwegian groundwaters: The distribution of radon, major and minor elements in 1,604 crystalline bedrock groundwaters. The Science of the Total Environment, 222(1–2), 71–91.CrossRefGoogle Scholar
  5. Barcelona, M.J., Gibb, J.P., Helfrich, J.A. & Garske, E.E. (1985). Practical guide for groundwater sampling. Illinois State Water Survey Contract Report, 374.Google Scholar
  6. Cho, B. W., Sung, I. H., Cho, S. Y., & Park, S. K. (2007). A preliminary investigation of radon concentrations in groundwater of South Korea (in Korean with English abstract). Journal of Soil and Groundwater Environment, 12(4), 98–104.Google Scholar
  7. Choi, B. S. (1999). Determination of aquifer characteristics from specific capacity data of wells in Cheju Island (in Korean with English abstract). Journal of Soil and Groundwater Environment, 16(4), 180–187.Google Scholar
  8. Cosma, C., Moldovan, M., Dicu, T., & Kovacs, T. (2008). Radon in water from Transylvania (Romania). Radiation Measurements, 43(8), 1423–1428.CrossRefGoogle Scholar
  9. Cothern, C. R., & Robers, P. A. (1990). Radon, radium and uranium in drinking water (Vol. 286). Boca Raton: Lewis publishers.Google Scholar
  10. EURATOM (European Atomic Energy Community) (2013). Council Directive 2013/51/EURATOM of 22 October 2013 Laying Down Requirements for the Protection of the Health of the General Public with Regard to Radioactive Substances in Water Intended for Human Consumption.Google Scholar
  11. Godoy, J. M., & Godoy, M. L. (2006). Natural radioactivity in Brazilian groundwater. Journal of Environmental Radioactivity, 85(1), 71–83.CrossRefGoogle Scholar
  12. Han, J. H., & Park, K. H. (1996). Abundance of uranium and radon in groundwater of Taejeon area (in Korean with English abstract). Economic and Environmental Geology, 29(5), 589–595.Google Scholar
  13. Han, Y. L., Tom Kuo, M. C., Fan, K. C., Chiang, C. J., & Lee, Y. P. (2004). Radon distribution in groundwater of Taiwan. Hydrogeology Journal, 14(1), 173–179.Google Scholar
  14. ICRP (International Commission on Radiological Protection). (2010). Lung cancer risk from radon and progeny and statement on radon. International Commission on Radiological Protection, Publication 115. Annals of the ICRP, 40(1), 64.Google Scholar
  15. Jobbágy, V., Altzitzoglou, T., Malo, P., Tanner, V., & Hult, M. (2017). A brief overview on radon measurements in drinking water. Journal of Environmental Radioactivity, 173(1), 18–24.CrossRefGoogle Scholar
  16. Khursheed, A. (2000). Doses to systemic tissues from radon gas. Radiation Protection Dosimetry, 88(2), 171–181.CrossRefGoogle Scholar
  17. KIGAM (1995). Geological map of Korea (1: 1,000,000) (In Korean). Korea Institute of Geology, Mining, and Materials, Daejeon, Korea.Google Scholar
  18. King, P. T., Michel, J., & Moore, W. S. (1982). Ground water geochemistry of 226Ra, 226Ra and 220Rn. Geochimicaet Cosmochimica Acta, 46, 1173–1182.CrossRefGoogle Scholar
  19. Loomis, D. P. (1987). Radon-222 concentration and aquifer lithology in North Carolina. Groundwater Monitoring and Remediation, 7(2), 33–39.CrossRefGoogle Scholar
  20. MOE (Ministry of Environment) (2010). Status of community groundwater system in 2009 (in Korean).Google Scholar
  21. NCRP (National Council on Radiation Protection and Measurements) (1984). Exposures from the uranium series with emphasis on radon and its daughters. NCRP report no. 77.Google Scholar
  22. NHMRC (National Health and Medical Research Council) (2015). Australian drinking water guidelines 6. Version 3.1.Google Scholar
  23. NIER (National Institute of Environmental Research) (1999). Studies on the radionuclides concentrations in groundwater. KIGAM report, 338.Google Scholar
  24. NIER (National Institute of Environmental Research) (2006). Studies on the naturally occurring radionuclides in groundwater (in Korean with English abstract). KIGAM report, 200.Google Scholar
  25. NIER (National Institute of Environmental Research) (2015). Studies on the naturally occurring radionuclides in groundwater in the multi-geologic areas (15) (in Korean with English abstract). NIER-SP2015-386, 203.Google Scholar
  26. Noh, H. J., Jeong, D. H., Yoon, J. K., Kim, M. S., Ju, B. K., Jeon, S. S., & Kim, T. S. (2011). Natural reduction characteristics of radon in drinking groundwater (in Korean with English abstract). Journal of Soil and Groundwater Environment, 16(1), 12–18.CrossRefGoogle Scholar
  27. Pinti, D. L., Retailleau, S., Barnetche, D., Moreira, F., Mortiz, A. M., Larocque, M., Gelinas, Y., Lefebvre, R., Helie, J. F., & Valadez, A. (2014). 222Rn activity in groundwater of the St. Lawrence Lowlands, Quebec, eastern Canada: relation with local geology and health hazard. Journal of Environmental Radioactivity, 136(1), 206–217.CrossRefGoogle Scholar
  28. Salonen, L. (1994). 238U series radionuclides as a source of increased radioactivity in ground water originating from Finnish bedrock. In Proceedings of IAHS Helsinki Conference, “Future Groundwater Resources at Risk,” International Association of Hydrological Sciences Publications. No. 222, 71–84.Google Scholar
  29. Salonen, L., & Hukkanen, H. (1997). Advantages of low-background liquid scintillation alpha-spectrometry and pulse shape analysis in measuring radon, uranium, and radium-226 in groundwater samples. Journal of Radioanalytical and Nuclear Chemistry, 226(1), 67–74.CrossRefGoogle Scholar
  30. Shin, D. B., & Kim, S. J. (2011). Geochemical characteristics of black slate and coaly slate from the uranium deposit in Deokpyeong area (in Korean with English abstract). Economic and Environmental Geology, 44(5), 373–386.CrossRefGoogle Scholar
  31. Skeppstrom, K., & Olofsson, B. (2006). A prediction method for radon in groundwater using GIS and multivariate statistics. The Science of the Total Environment, 367, 666–680.CrossRefGoogle Scholar
  32. Skeppstrom, K., & Olofsson, B. (2007). Uranium and radon in groundwater–an overview of the problem. European Water, 17(18), 51–62.Google Scholar
  33. Telahigue, F., Agoubi, B., Soudid, F., & Kharroubi, A. (2018). Groundwater chemistry and radon-222 distribution in Jerba island, Tunisia. Journal of Environmental Radioactivity, 182(1), 74–84.CrossRefGoogle Scholar
  34. USEPA (United States Environmental Protection Agency) (1999). Proposed radon in drinking water rule, Office of Water, EPA 815-F-99-006.Google Scholar
  35. USGS (United States Geological Survey) (2011). Trace elements and radon in groundwater across the United States, 1992-2003, National Water-Quality Assessment Program. U.S. Geological Survey, Scientific Investigations Report 2011–5059, 115.Google Scholar
  36. Voutilainen, A., Mäkeläinen, I., Huikuri, P., & Salonen, L. (2000). Radon atlas of wells drilled into bedrock in Finland. STUK-A171. Helsinki: Säteilyturvakeskus.Google Scholar
  37. WHO (World Health Organization) (2008). Guidelines for drinking-water quality, 3rd edition. Vol. 1 recommendations. Geneva.Google Scholar
  38. Yun, U., Kim, T. S., Kim, H. K., Kim, M. S., Cho, S. Y., Choo, C. O., & Cho, B. W. (2017). Natural radon reduction rate of the community groundwater system in South Korea. Applied Radiation and Isotopes, 126(1), 23–25.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Byong Wook Cho
    • 1
  • Hyeon Koo Kim
    • 2
  • Moon Su Kim
    • 2
  • Jae Hong Hwang
    • 1
  • Uk Yoon
    • 1
  • Soo Young Cho
    • 1
  • Chang Oh Choo
    • 3
    Email author
  1. 1.Korea Institute of Geosciences and Mineral Resources (KIGAM)DaejeonSouth Korea
  2. 2.National Institute of Environmental Research (NIER)IncheonSouth Korea
  3. 3.Department of GeologyKyungpook National UniversityDaeguSouth Korea

Personalised recommendations