Advertisement

Evaluating the retention capacity of a new subtropical run-of-river reservoir

  • Irineu BianchiniJrEmail author
  • Ângela T. Fushita
  • Marcela B. Cunha-Santino
Article
  • 65 Downloads

Abstract

In man-made reservoirs, the sedimentation and assimilation of elements usually prevail as a result of a decrease in the flow regime and an increase in the hydraulic retention time. Thus, the retention capacity derives from hydraulic flushing, as well as chemical and biological reactions. The aim of this study was to assess the element retention capacity of a new subtropical reservoir (Piraju Reservoir situated in São Paulo State, Brazil). Limnological monitoring was performed over four consecutive years (August 2003 to August 2007). We determined 19 variables (chemical, physical, and biological) every 3 months at the inlet (Paranapanema River) and outlet water of the Piraju Reservoir. For each variable, a mass balance was performed and the alpha parameter (i.e., retention capacity) was defined resulting in 323 determinations. From these results, only 10% led to the occurrence of element retention. Retention events were episodic; the fecal coliforms (seven times) and the N-NH4 (six times) were the variables that presented the highest number of retentions. The results show that different variables can be linked to both the retention and release of elements from the reservoirs. The results show the great significance of the physical processes (in this case, hydraulic retention time and mixing regime) in determining the element retention and exportation from the Piraju Reservoir. The water temperature was a secondary variable for the processes related to retention (such as chemical reactions and biological assimilations).

Keywords

Mass balance Limnological monitoring Eutrophication Mathematical model Hydrogeochemistry 

Notes

Acknowledgments

The authors are grateful to Companhia Brasileira de Alumínio (CBA-Votorantim), currently Votorantim Energia, for providing the data of the reservoir (BQ, MOH, DA, A, V, flow, and rainfall), for subsiding the field sampling, and for the concession of limnological data.

Funding information

This study is supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq grant number: 305263/2014-5).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Ahn, J. M., Jung, K. Y., & Shin, D. (2017). Effects of coordinated operation of weirs and reservoirs on the water quality of the Geum River. Water, 9, 423.CrossRefGoogle Scholar
  2. Ambrosetti, W., Barbanti, L., & Sala, N. (2003). Residence time and physical processes in lakes. Journal of Limnology, 62(1), 1–15.CrossRefGoogle Scholar
  3. Anderson, K. L., Whitlockm, J. E., & Harwood, V. J. (2005). Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Applied and Environmental Microbiology, 71(6), 3041–3048.CrossRefGoogle Scholar
  4. ANEEL - Agência Nacional de Energia Elétrica. (2005). Atlas de Energia Elétrica do Brasil (2ª ed.). Brasília: Brazilian National Agency of Electric Energy.Google Scholar
  5. APHA, AWWA, WEF - American Public Health Association, American Water Works Association and Water Environment Federation. (1998). Standard methods for the examination of water and wastewater. Washington DC: APHA, AWWA, WEF.Google Scholar
  6. Araújo, F. G., Azevedo, M. C. C., & Ferreira, M. N. L. (2011). Seasonal changes and spatial variation in the water quality of a eutrophic tropical reservoir determined by the inflowing river. Lake and Reservoir Management, 27(4), 343–354.CrossRefGoogle Scholar
  7. Arcifa, M. S., & Esguícero, A. L. H. (2012). The fish fauna in the fish passage at the Ourinhos Dam, Paranapanema River. Neotropical Ichthyology, 10(4), 715–722.CrossRefGoogle Scholar
  8. Bartoszek, L., & Koszelnik, P. (2016). The qualitative and quantitative analysis of the coupled C, N, P and Si retention in complex of water reservoirs. SpringerPlus, 5, 1157.CrossRefGoogle Scholar
  9. Bianchini, I., Jr., & Cunha-Santino, M. B. (2014). Dynamics of colonization and collapse of macrophyte community during the formation of a tropical reservoir. Fundamental and Applied Limnology, 184(2), 141–150.CrossRefGoogle Scholar
  10. Bianchini, I., Jr., Cunha-Santino, M. B., & Panhota, R. S. (2011). Oxygen uptake from aquatic macrophyte decomposition from Piraju Reservoir (Piraju, SP, Brazil). Brazilian Journal of Biology, 71(1), 27–35.CrossRefGoogle Scholar
  11. Bouwman, A. F., Bierkens, M. F. P., Griffioen, J., Hefting, M. M., Middelburg, J. J., Middelkoop, H., & Slomp, C. P. (2013). Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models. Biogeosciences, 10, 1–22.CrossRefGoogle Scholar
  12. Cappellen, P., & Maavara, T. (2016). Rivers in the Anthropocene: global scale modifications of riverine nutrient fluxes by damming. Ecohydrology & Hydrobiology, 16(2), 106–111.CrossRefGoogle Scholar
  13. Chapra, S. C., & Reckhow, K. H. (1983). Engineering approaches for lake management. Volume 2: Mechanistic modeling. Woburn: Butterworth Publishers.Google Scholar
  14. Cunha, D. G. F., Calijuri, M. C., & Doddys, W. K. (2014). Trends in nutrient and sediment retention in Great Plains reservoirs (USA). Environmental Monitoring and Assessment, 186(2), 1143–1155.CrossRefGoogle Scholar
  15. Cunha-Santino, M. B., Bitar, A. L., & Bianchini, I., Jr. (2013). Chemical constraints on new man-made lakes. Environmental Monitoring and Assessment, 185(12), 10177–10190.CrossRefGoogle Scholar
  16. Cunha-Santino, M. B., Fushita, A. T., & Bianchini, I., Jr. (2017). A modeling approach for a cascade of reservoirs in the Juquiá-Guaçu River (Atlantic Forest, Brazil). Ecological Modelling, 356, 48–58.CrossRefGoogle Scholar
  17. Figueiredo, D. M., & Bianchini, I., Jr. (2008). Limnological patterns of the filling and stabilization phases in the Manso multiple-use Reservoir (MT). Acta Limnologica Brasiliensia, 20(4), 277–290.Google Scholar
  18. Henry, R. (1999). Thermal regime and oxygen patterns in reservoirs. In J. G. Tundisi & M. Straškraba (Eds.), Theoretical reservoir ecology and its applications (pp. 125–151). Backhuys: Leiden.Google Scholar
  19. Henry, R., Nogueira, M. G., Pompeo, M. L., & Mosquini-Carlos, V. (2006). Annual and short-term variability in primary productivity by phytoplankton and correlated abotic factors in the Jurumirim Reservoir (São Paulo, Brazil). Brazilian Journal of Biology, 66(1), 239–261.CrossRefGoogle Scholar
  20. Hutchinson, G. E., & Löffler, H. (1956). The thermal classification of lakes. Proceedings of the National Academy of Sciences of the United States of America, 42(2), 84–86.CrossRefGoogle Scholar
  21. Jorcin, A., & Nogueira, M. G. (2008). Benthic macroinvertebrates in the Paranapanema reservoir cascade (Southeast Brazil). Brazilian Journal of Biology, 68(4), 1013–1024.CrossRefGoogle Scholar
  22. Jørgensen, S. E., & Bendoricchio, G. (2001). Fundamental of ecological modelling. Amsterdam: Elsevier.Google Scholar
  23. Jossette, G., Leporcq, B., Sanchez, N., & Philippon, X. (1999). Biogeochemical mass-balances (C, N, P, Si) in three large reservoirs of the Seine Basin (France). Biogeochemistry, 47(2), 119–146.CrossRefGoogle Scholar
  24. Kerimoglu, O., & Rinke, K. (2013). Stratification dynamics in a shallow reservoir under different hydro-meteorological scenarios and operational strategies. Water Resources Research, 49(11), 7518–7527.CrossRefGoogle Scholar
  25. Kimmel, B. L., Lind, O. T., & Paulson, L. J. (1990). Reservoir primary production. In K. W. Thorton, B. L. Kimmel, & F. E. Payne (Eds.), Reservoir limnology: ecological perspectives (pp. 133–193). New York: Wiley-Interscience Publication.Google Scholar
  26. Kõiv, T., Nõges, T., & Laas, A. (2011). Phosphorus retention as a function of external loading, hydraulic turnover time, area and relative depth in 54 lakes and reservoirs. Hydrobiologia, 660(1), 105–115.CrossRefGoogle Scholar
  27. Kondolf, G. M., Gao, Y., Annandale, G. W., Morris, G. L., Jiang, E., Zhang, J., et al. (2014). Sustainable sediment management in reservoirs and regulate drivers: Experiences from five continents. Earth’s Future, 2(5), 256–280.CrossRefGoogle Scholar
  28. Köppen, W. (1931). Grundriss der Klimakunde. Berlin: De Gruyter.Google Scholar
  29. Koroleff, F. (1976). Determination of ammonia. In K. Grasshoff (Ed.), Methods of seawater analysis (pp. 126–133). New York: Verlag Chemie GmbH.Google Scholar
  30. Lu, T., Chen, N., Duan, S., Chen, Z., & Huang, B. (2016). Hydrological controls on cascade reservoirs regulating phosphorus retention and downriver fluxes. Environmental Science and Pollution Research International, 23(23), 24166–24177.CrossRefGoogle Scholar
  31. Maavara, T., Parsons, C. T., Ridenour, C., Stojanovic, S., Dürr, H. H., Powley, H. R., & Van Cappellen, P. (2015). Global phosphorus retention by river damming. Proceedings of the National Academy of Sciences of the United States of America, 112(51), 15603–15608.Google Scholar
  32. Mackereth, F. J. H., Heron, J., & Talling, J. F. (1978). Water chemistry: some revised methods for limnologists. Cumbria: Freshwater Biological Association.Google Scholar
  33. Marren, P. M., Grove, J. R., Webb, A., & Stewardson, M. J. (2014). The potential for dams to impact lowland meandering river floodplain geomorphology. The Scientific World Journal, 6, 309673.Google Scholar
  34. Millennium Ecosystem Assessment. (2003). Ecosystems and human well-being: a framework for assessment. Washington, DC: World Resources Institute.Google Scholar
  35. Némery, J., Gratiot, N., Doan, P. T. K., Duvert, C., Alvarado-Villanueva, R., & Duwig, C. (2015). Carbon, nitrogen, phosphorus, and sediment sources and retention in a small eutrophic tropical reservoir. Aquatic Sciences, 78(1), 171–189.CrossRefGoogle Scholar
  36. Novaes, L. F., Pruski, F. F., Queiroz, D. O., Rodriguez, R. G., Silva, D. D., & Ramos, M. M. (2009). Modelo para a quantificação da disponibilidade hídrica: Parte 2 - Análise do comportamento do modelo para a estimativa da Q7,10 na Bacia do Paracatu. Brazilian Journal of Water Resources, 14(1), 27–39.Google Scholar
  37. Nürnberg, G. K. (2009). Assessing internal phosphorus load – problems to be solved. Lake and Reservoir Management, 25(4), 419–432.CrossRefGoogle Scholar
  38. Oliver, A. A., Dahlgren, R. A., & Deasb, M. L. (2014). The upside-down river: reservoirs, algal blooms, and tributaries affect temporal and spatial patterns in nitrogen and phosphorus in the Klamath River, USA. Journal of Hydrology, 519(A), 164–176.CrossRefGoogle Scholar
  39. Orlob, G. T., Roesner, L. A., & Norton, W. R. (1969) Mathematical models for prediction of thermal energy changes in impoundments. EPA water pollution control research series, US Environmental Protection Agency. Washington DC: FWQA report no. 16130 EXT 12/69.Google Scholar
  40. Politi, E., & Prairie, Y. T. (2018). The potential of earth observation I modeling nutrient loading and water quality in lakes of southern Québec, Canada. Aquatic Sciences, 80, 8.CrossRefGoogle Scholar
  41. Power, M. E., Dietrich, W. E., & Finlay, J. C. (1996). Dams and downstream aquatic biodiversity: potential food web consequences of hydrologic and geomorphic change. Environmental Management, 20(6), 887–895.CrossRefGoogle Scholar
  42. Ran, X., Bouwman, L., Yu, Z., Beusen, A., Chen, H., & Yao, Q. (2017). Nitrogen transport, transformation, and retention in the three gorges reservoir: a mass balance approach. Limnology and Oceanography, 62, 2323–2337.CrossRefGoogle Scholar
  43. Rubio-Arias, H., Contreras-Caraveo, M., Quintana, R. M., Saucedo-Teran, R. A., & Pinales-Munguia, A. (2012). An overall water quality index (WQI) for a man-made aquatic reservoir in Mexico. International Journal of Environmental Research and Public Health, 9(5), 1687–1698.CrossRefGoogle Scholar
  44. Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., et al. (2005). Geochemical atlas of Europe, part 1, background information, methodology and maps. In R. R. Salimen, J. Plant, & R. Shaun (Eds.), Geological survey of Finland. Espoo: Geological Survey of Finland.Google Scholar
  45. Schiller, D., Aristi, I., Ponsatí, L., Arroita, M., Acuña, V., Elosegi, A., & Sabater, S. (2016). Regulation causes nitrogen cycling discontinuities in Mediterranean rivers. Science of the Total Environment, 540, 168–177.CrossRefGoogle Scholar
  46. Sironić, A., Barešić, J., Horvatinčić, N., Brozinčević, A., Vurnek, M., & Kapelj, S. (2017). Changes in the geochemical parameters of karst lakes over the past three decades - The case of Plitvice Lakes, Croatia. Applied Geochemistry, 78, 12–22.CrossRefGoogle Scholar
  47. Søndergaard, M., Jensen, J. P., & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506(1–3), 135–145.CrossRefGoogle Scholar
  48. Straškraba, M. (1999). Retention time as a key variable of reservoir limnology. In J. G. Tundisi & M. Straškraba (Eds.), Theoretical reservoir ecology and its applications (pp. 505–528). Backhuys: Leiden.Google Scholar
  49. Sumi, T., & Hirose, T. (2009). Accumulation of sediment in reservoirs. In Y. Takahasi (Ed.), Water storage, transport, and distribution (pp. 224–252). Oxford: UNESCO-IHE/EOLSS Publishers Co..Google Scholar
  50. Teodoru, C., & Wehrli, B. (2005). Retention of sediments and nutrients in the Iron Gate I reservoir on the Danube River. Biogeochemistry, 76(3), 539–565.CrossRefGoogle Scholar
  51. Thomann, R. V., & Müller, J. A. (1987). Principles of surface water quality modeling and control. New York: Haper & Row.Google Scholar
  52. UFSCar/CBA. (2008). Plano de controle ambiental UHE Piraju: monitoramento da qualidade de águas superficiais e monitoramento e controle das macrófitas aquáticas e de florações de algas. FAI/UFSCar, São Carlos, 115p (Relatório Técnico Final).Google Scholar
  53. Vinçon-Leite, B., & Casenave, C. (2019). Modelling eutrophication in lake ecosystems: a review. The Science of the Total Environment, 651(part 2), 2985–3001.CrossRefGoogle Scholar
  54. Vollenweider, R. A. (1968). Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorous as factors in eutrophication. Paris: Organization for Economic Cooperation and Development, DAS/CSI/68.27.Google Scholar
  55. Wang, S., Qian, X., Han, B. P., Luo, L. C., & Hamilton, D. P. (2012). Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China. Water Research, 46(8), 2591–2604.CrossRefGoogle Scholar
  56. Wei, G., Yang, Z., Cui, B. S., Li, B., Chen, H., Bai, J. H., & Dong, S. K. (2009). Impact of dam construction on water quality and water self-purification capacity of the Lancang River, China. Water Resources Management, 23(9), 1763–1780.CrossRefGoogle Scholar
  57. Ye, L., Cai, Q., Zhang, M., Tan, L., & Shen, H. (2016). Ecosystem metabolism and the driving factors in Xiangxi Bay of three gorges reservoir, China. Freshwater Sci, 35(3), 826–833.CrossRefGoogle Scholar
  58. Zeng, Q., Qin, L., Bao, L., Li, Y., & Li, X. (2016). Critical nutrient thresholds needed to control eutrophication and synergistic interactions between phosphorus and different nitrogen sources. Environmental Science and Pollution Research, 23(20), 21008–21019.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Irineu BianchiniJr
    • 1
    • 2
    Email author
  • Ângela T. Fushita
    • 2
    • 3
  • Marcela B. Cunha-Santino
    • 1
    • 2
  1. 1.Departamento HidrobiologiaUniversidade Federal de São CarlosSão CarlosBrazil
  2. 2.Programa de Pós-Graduação em Ecologia e Recursos NaturaisUniversidade Federal de São CarlosSão CarlosBrazil
  3. 3.Centro de Engenharia, Modelagem e Ciências Sociais AplicadasUniversidade Federal do ABCSanto AndréBrazil

Personalised recommendations