Advertisement

Benthic diatoms as bioindicators of environmental alterations in different watercourses of northern Italy

  • Francesca SalmasoEmail author
  • Silvia Quadroni
  • Stefania Compare
  • Gaetano Gentili
  • Giuseppe Crosa
Article
  • 156 Downloads

Abstract

This work aims to evaluate the effects of different environmental factors (i.e., geographical, chemical, and hydrological) on benthic diatoms at 34 sites located in 13 watercourses of northern Italy, and to highlight possible misclassifications of the ecological status of watercourses, sensu Water Framework Directive, related to the normative index currently adopted in Italy (ICMi). The analysis of both the taxonomical and functional composition of diatom communities confirmed the presence of differences in terms of taxonomical richness, diversity, and taxa assemblages, associated to the altitude and the geological characteristics of the investigated watercourses. Moreover, the data analysis revealed differences due to chemical and hydrological alterations. Specifically, our results showed a clear link among these environmental perturbations and the communities’ functional composition expressed through the use of ecological guilds. High abundance and richness of motile diatoms were detected in sites characterized by nutrient enrichment, while high abundance of low-profile diatoms was linked to hydrological alteration. In contrast, these anthropogenic perturbations were not detected by the ICMi, which ranked more than 90% of the analyzed samples in the highest quality class. This study stresses the need for a different approach in diatom data interpretation in order to achieve reliable information about the ecological status of watercourses.

Keywords

Diatoms Water framework directive River Ecological guilds Hydrology Pollution 

Notes

Supplementary material

10661_2019_7290_MOESM1_ESM.docx (42 kb)
ESM 1 (DOCX 42 kb)

References

  1. Addinsoft. (2011). Data analysis and statistical solution for Microsoft excel. Paris: Addinsoft.Google Scholar
  2. Angiolini, C., Nucci, A., Frignani, F., & Landi, M. (2011). Using multivariate analyses to assess effects of fluvial type on plant species distribution in a Mediterranean river. Wetlands, 31, 167–177.  https://doi.org/10.1007/s13157-010-0118-7.CrossRefGoogle Scholar
  3. APAT-IRSA/CNR. (2003). Metodi analitici per le acque. APAT Manuali e linee guida 29/2003.Google Scholar
  4. Battarbee, R., Jones, V., Flower, R., et al. (2001). Diatoms. In J. Smol, H. J. Birks, W. Last, R. Bradley, & K. Alverson (Eds.), Tracking environmental change using lake sediments (pp. 155–202). Netherlands: Springer.Google Scholar
  5. B-Béres, V., Török, P., Kókai, Z., Krasznai, E. T., Tóthmérész, B., & Bácsi, I. (2014). Ecological diatom guilds are useful but not sensitive enough as indicators of extremely changing water regimes. Hydrobiologia, 738, 191–204.  https://doi.org/10.1007/s10750-014-1929-y.CrossRefGoogle Scholar
  6. Beltrami, M. E., Ciutti, F., Cappelletti, C., Lösch, B., Alber, R., & Ector, L. (2012). Diatoms from alto Adige/Südtirol (northern Italy): characterization of assemblages and their application for biological quality assessment in the context of the water framework directive. Hydrobiologia, 695, 153–170.  https://doi.org/10.1007/s10750-012-1194-x.CrossRefGoogle Scholar
  7. Bey, M. Y., & Ector, L. (2013). Atlas des diatomées des cours d'eau de la région Rhone-Alpes. Lippmann: Centre de Recherche Public Gabriel.Google Scholar
  8. Biggs, B. J. F., Stevenson, R. J., & Lowe, R. L. (1998). A habitat matrix conceptual model for stream periphyton. Archiv für Hydrobiologie, 143, 21–56.  https://doi.org/10.1127/archiv-hydrobiol/143/1998/21.CrossRefGoogle Scholar
  9. Bona, F., Falasco, E., Fenoglio, S., Iorio, L., & Badino, G. (2008). Response of macroinvertebrate and diatom communities to human-induced physical alteration in mountain streams. River Research and Applications, 24, 1068–1081.  https://doi.org/10.1002/rra.1110.CrossRefGoogle Scholar
  10. Bona, F., La Morgia, V., & Falasco, E. (2012). Predicting river diatom removal after shear stress induced by ice melting. River Research and Applications, 28, 1289–1298.  https://doi.org/10.1002/rra.1517.CrossRefGoogle Scholar
  11. Brignoli, M. L., Espa, P., & Batalla, R. J. (2017). Sediment transport below a small alpine reservoir desilted by controlled flushing: field assessment and one-dimensional numerical simulation. Journal of Soils and Sediments, 17, 2187–2201.  https://doi.org/10.1007/s11368-017-1661-0.CrossRefGoogle Scholar
  12. Carrère, P., & Bloor, J. M. G. (2009). Lexique thématique à l’usage des techniciens en écologie. Clermont-Ferrand: INRA, EFPA, Unité de Recherche sur l’Ecosystème Prairial 7 p.Google Scholar
  13. CEMAGREF. (1982). Etude de méthodes biologiques quantitatives d’appréciation de la qualité des eaux. Rapport Q.E. Lyon-A.F.B. Rhône-Mediterranée-Corse.Google Scholar
  14. CEN. (2004). UNI EN 14407:2004Water Quality - Guidance Standard For The Identification, Enumeration And Interpretation Of Benthic Diatom Samples From Running Waters. Available at https://infostore.saiglobal.com.
  15. CEN. (2005). UNI EN 13946:2005Water Quality - Guidance standard for the routine sampling and pretreatment of benthic diatoms from rivers. Available at https://infostore.saiglobal.com.
  16. Charles, D. F., Tuccillo, A. P., & Belton, T. J. (2019). Use of diatoms for developing nutrient criteria for rivers and streams: a biological condition gradient approach. Ecological Indicators, 96, 258–269.  https://doi.org/10.1016/j.ecolind.2018.08.048.CrossRefGoogle Scholar
  17. Clausen, B., & Biggs, B. (1997). Relationships between benthic biota and hydrological indices in New Zealand streams. Freshwater Biology, 38, 327–342.  https://doi.org/10.1046/j.1365-2427.1997.00230.x.CrossRefGoogle Scholar
  18. EC. (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23rd October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities, L327/1. Brussels, European Commission.Google Scholar
  19. Engelhardt, B. M., Weisberg, P. J., & Chambers, J. C. (2011). Influences of watershed geomorphology on extent and composition of riparian vegetation. Journal of Vegetation Science, 23, 127–139.  https://doi.org/10.1111/j.1654-1103.2011.01328.x.CrossRefGoogle Scholar
  20. Espa, P., Castelli, E., Crosa, G., & Gentili, G. (2013). Environmental effects of storage preservation practices: controlled flushing of fine sediment from a small hydro-power reservoir. Environmental Management, 52, 261–276.  https://doi.org/10.1007/s00027-009-0117-z.CrossRefGoogle Scholar
  21. Espa, P., Crosa, G., Gentili, G., Quadroni, S., & Petts, G. (2015). Downstream ecological impacts of controlled sediment flushing in an alpine valley river: a case study. River Research and Applications, 31, 931–942.  https://doi.org/10.1002/rra.2788.CrossRefGoogle Scholar
  22. Espa, P., Brignoli, M. L., Crosa, G., Gentili, G., & Quadroni, S. (2016). Controlled sediment flushing at the Cancano reservoir (Italian Alps): management of the operation and downstream environmental impact. Journal of Environmental Management, 182, 1–12.  https://doi.org/10.1016/j.jenvman.2016.07.021.CrossRefGoogle Scholar
  23. Falasco, E., Mobili, L., Risso, A. M., & Bona, F. (2012). First considerations on the ICMi diatom index application in north-west Italy. Biologia Ambientale, 26, 21–28.Google Scholar
  24. Falasco, E., Piano, E., & Bona, F. (2013). Guida al riconoscimento e all’ecologia delle principali diatomee fluviali dell’Italia nord occidentale. Biologia Ambientale, 27, 1–288.Google Scholar
  25. Feminella, J. W., & Hawkins, C. P. (1995). Interactions between stream herbivores and periphyton: a quantitative analysis of past experiments. Journal of the North American Benthological Society, 14, 465–509.  https://doi.org/10.2307/1467536.CrossRefGoogle Scholar
  26. Fourtanier, E., & Kociolek, J. P. (2011). Catalogue of Diatom Names, California Academy of Sciences, on-line version updated 19 sep 2011 available online at: http://research.calacademy.org/research/diatoms/names/index.asp.
  27. Guiry, M. D., & Guiry, G. M. (2015). AlgaeBase, World-wide electronic publication. Galway: National University of Ireland http://www.algaebase.org.Google Scholar
  28. Heath, M. W., Wood, S. A., Brasell, K. A., Young, R. G., & Ryan, K. G. (2015). Development of habitat suitability criteria and in-stream habitat assessment for the benthic cyanobacteria Phormidium. River Research and Applications, 31, 98–108.  https://doi.org/10.1002/rra.2722.CrossRefGoogle Scholar
  29. Hofmann, G., Werum, M., & Lange-Bertalot, H. (2011). Diatomeen im Sϋβwasser-Benthos von Mitteleuropa. A.R.G. Gantner Verlag K.G., 908 pp.Google Scholar
  30. Hoyle, J. T., Kilroy, C., Hicks, D. M., & Brown, L. (2017). The influence of sediment mobility and channel geomorphology on periphyton abundance. Freshwater Biology, 62, 258–273.  https://doi.org/10.1111/fwb.12865.CrossRefGoogle Scholar
  31. ISPRA. (2014). Protocollo di campionamento e analisi delle diatomee bentoniche dei corsi d’acqua. In: Metodi biologici per le acque superficiali interne. Roma: ISPRA, Manuali e linee guida, 111/2014.Google Scholar
  32. Johnson, R. E., Tuchman, N. C., & Peterson, C. G. (1997). Changes in the vertical microdistribution of diatoms within a developing periphyton mat. Journal of the North American Benthological Society, 16, 503–519.  https://doi.org/10.2307/1468140.CrossRefGoogle Scholar
  33. Jüttner, I., Sharma, S., Dahal, B. M., Ormerod, S. J., Chimonides, P. J., & Cox, E. J. (2003). Diatoms as indicators of stream quality in the Kathmandu Valley and Middle Hills of Nepal and India. Freshwater Biology, 48, 2065–2084.  https://doi.org/10.1046/j.1365-2427.2003.01138.x.CrossRefGoogle Scholar
  34. Kelly, M. (2013). Data rich, information poor? Phytobenthos assessment and the Water Framework Directive. European Journal of Phycology, 48, 437–450.  https://doi.org/10.1080/09670262.2013.852694.CrossRefGoogle Scholar
  35. Kornan, M., & Kropil, R. (2014). What are ecological guilds? Dilemma of guild concepts. Russian Journal of Ecology, 45, 445–447.  https://doi.org/10.1134/S1067413614050178.CrossRefGoogle Scholar
  36. Krammer, K. (2002). Cymbella—diatoms of Europe volume 3. Diatoms of the European inland waters and comparable habitats. A. R. G. GantnerVerlag, Rugel.Google Scholar
  37. Krammer, K., & Lange-Bertalot, H. (1986). Bacillariophyceae. 1. Teil: Naviculaceae, Sϋβwasserflora von Mitteleuropa, 2/1. Stuttgart: Gustav Fischer Verlag Neuauflage 1997. REPRINT 2007.Google Scholar
  38. Krammer, K., & Lange-Bertalot, H. (1988). Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Sϋβwasserflora von Mitteleuropa, 2/2. Stuttgart: Gustav Fischer Verlag Neuauflage 1997. REPRINT 2007.Google Scholar
  39. Krammer, K., & Lange-Bertalot, H. (1991a). Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Sϋβwasserflora von Mitteleuropa, 2/3. Stuttgart: Gustav Fischer Verlag CORRECTED REPRINT 2004.Google Scholar
  40. Krammer, K., & Lange-Bertalot, H. (1991b). Bacillariophyceae. 4 Teil: Achnanthaceae, kritische Erganzungen zu Achnanthes s.l., Navicula s.str. und Gomphonema. Sϋβwasserflora von Mitteleuropa, 2/4. Stuttgart: Gustav Fischer Verlag REV. ED. 2004.Google Scholar
  41. Krammer, K., & Lange-Bertalot, H. (2000). Bacillariophyceae. Part 5: English and French translation of the keys. Sϋβwasserflora von Mitteleuropa, 2/5. Stuttgart: Gustav Fischer Verlag.Google Scholar
  42. Lange, K., Townsend, C. R., & Matthaei, C. D. (2016). A trait-based framework for stream algal communities. Ecology and Evolution, 6, 23–36.  https://doi.org/10.1002/ece3.1822.CrossRefGoogle Scholar
  43. Lange-Bertalot, H. (2001) Navicula sensu stricto, 10 genera separated from Navicula sensu lato, Frustulia - diatoms of Europe, volume 2. Diatoms of the European inland waters and comparable habitats. A. R. G. GantnerVerlag, Rugell.Google Scholar
  44. Lecointe, C., Coste, M., & Prygiel, J. (1993). “Omnidia”: software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia, 269(270), 509–513.  https://doi.org/10.1007/BF00028048.CrossRefGoogle Scholar
  45. Lobo, E. A., Callegaro, V. L. M., Hermany, G., Bes, D., Wetzel, C. A., & Oliveira, M. A. (2004). Use of epilithic diatoms as bioindicators from lotic systems in southern Brazil, with special emphasis on eutrophication. Acta Limnologica Brasilensia, 16, 25–40.Google Scholar
  46. MacMahon, J. A., Schimpf, D. J., Andersen, D. C., Smith, K. G., & Bayn, R. L. (1981). An organism-centered approach to some community and ecosystem concepts. Journal of Theoretical Biology, 29, 287–307.  https://doi.org/10.1016/0022-5193(81)90077-1.CrossRefGoogle Scholar
  47. Mancini, L., & Sollazzo, C. (Eds.). (2009). Metodo per la valutazione dello stato ecologico delle acque correnti: comunità diatomiche. Roma: Istituto Superiore di Sanità (Rapporti ISTISAN 09/19).Google Scholar
  48. Mao, S., Guo, S., Deng, H., Xie, Z., & Tang, T. (2018). Recognition of patterns of benthic diatom assemblages within a river system to aid bioassessment. Water, 10, 1559.  https://doi.org/10.3390/w10111559.CrossRefGoogle Scholar
  49. Marcel, R., Berthon, V., Castets, V., Rimet, F., Thiers, A., Labat, F., & Fontan, B. (2017). Modelling diatom life forms and ecological guilds for river biomonitoring. Knowledge & Management of Aquatic Ecosystems, 418, 1–15.  https://doi.org/10.1051/kmae/2016033.CrossRefGoogle Scholar
  50. MATTM. (2010). D.M. Ambiente 8 novembre 2010 n. 260. Regolamento recante i criteri tecnici per la classificazione dello stato dei corpi idrici superficiali, per la modifica delle norme tecniche del decreto legislativo 3 aprile 2006, n.152, recante norme in materia ambientale, predisposto ai sensi dell’articolo 75, comma 3, del medesimo decreto legislativo.Google Scholar
  51. MATTM. (2017). Decreto n. 30/STA del 13/02/2017, di approvazione delle Linee Guida per l’aggiornamento dei metodi di determinazione del deflusso minimo vitale al fine di garantire il mantenimento nei corsi d’acqua del deflusso ecologico a sostegno del raggiungimento degli obiettivi di qualità ambientale dei corpi idrici definiti ai sensi della Direttiva 2000/60/CE.Google Scholar
  52. Montgomery, D. R., & Buffington, J. M. (1997). Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin, 109, 596–611.  https://doi.org/10.1130/0016-7606(1997)109b0596:CRMIMDN2.3.CO;2.CrossRefGoogle Scholar
  53. Nhiwatiwa, T., Dalu, T., & Sithole, T. (2017). Assessment of river quality in a subtropical austral river system: a combined approach using benthic diatoms and macroinvertebrates. Applied Water Science, 7, 4785–4792.  https://doi.org/10.1007/s13201-017-0599-0.CrossRefGoogle Scholar
  54. Nucci, A., Angiolini, C., Landi, M., & Bacchetta, G. (2012). Influence of bedrock-alluvial transition on plant species distribution along a Mediterranean river corridor. Plant Biosystems, 146, 564–575.  https://doi.org/10.1080/11263504.2012.670669.CrossRefGoogle Scholar
  55. o’Driscoll, C., de Eyto, E., Rodgers, M., O’Connor, M., Kelly, M., & Xiao, L. (2014). Spatial and seasonal variation of peatland-fed riverine macroinvertebrate and benthic diatom assemblages and implications for assessment: a case study from Ireland. Hydrobiologia, 728, 67–87.  https://doi.org/10.1007/s10750-014-1807-7.CrossRefGoogle Scholar
  56. Pardo, I., Delgado, C., Abraín, R., Gómez-Rodríguez, C., García-Roselló, E., García, L., & Reynoldson, T. B. (2018). A predictive diatom-based model to assess the ecological status of streams and rivers of northern Spain. Ecological Indicators, 90, 519–528.  https://doi.org/10.1016/j.ecolind.2018.03.042.CrossRefGoogle Scholar
  57. Passy, S. I. (2007). Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany, 86, 171–178.  https://doi.org/10.1016/j.aquabot.2006.09.018.CrossRefGoogle Scholar
  58. Peterson, C. G. (1987). Gut passage and insect grazer selectivity of lotic diatoms. Freshwater Biology, 18, 455–460.  https://doi.org/10.1111/j.1365-2427.1987.tb01330.x.CrossRefGoogle Scholar
  59. Poikane, S., Kelly, M., & Cantonati, M. (2016). Benthic algal assessment of ecological status in European lakes and rivers: challenges and opportunities. Science of the Total Environment, 568, 603–613.  https://doi.org/10.1016/j.scitotenv.2016.02.027.CrossRefGoogle Scholar
  60. Potapova, M., & Charles, D. F. (2002). Benthic diatoms in USA rivers: distribution along spatial and environmental gradients. Journal of Biogeography, 29, 167–187.  https://doi.org/10.1046/j.1365-2699.2002.00668.x.CrossRefGoogle Scholar
  61. Quadroni, S., Brignoli, M. L., Crosa, G., Gentili, G., Salmaso, F., Zaccara, S., & Espa, P. (2016). Effects of sediment flushing from a small Alpine reservoir on downstream aquatic fauna. Ecohydrology, 9, 1276–1288.  https://doi.org/10.1002/eco.1725.CrossRefGoogle Scholar
  62. Quadroni, S., Crosa, G., Gentili, G., & Espa, P. (2017). Response of stream benthic macroinvertebrates to current water management in Alpine catchments massively developed for hydro-power. Science of the Total Environment, 609, 484–496.  https://doi.org/10.1016/j.scitotenv.2017.07.099.CrossRefGoogle Scholar
  63. Regione Lombardia. (2014). D.d.g. 8 maggio 2014 - n. 3816 Integrazione del d.d.g. n. 9001 dell’8 agosto 2008. Approvazione delle linee guida per l’avvio di sperimentazioni sul deflusso minimo vitale in tratti del reticolo idrico naturale regionale. Bollettino Ufficiale regione Lombardia, Serie Ordinaria n. 20 - Lunedì 12 maggio 2014.Google Scholar
  64. Rimet, F. (2009). Benthic diatom assemblages and their correspondence with ecoregional classifications: case study of rivers in north-eastern France. Hydrobiologia, 636, 137–151.  https://doi.org/10.1007/s10750-009-9943-1.CrossRefGoogle Scholar
  65. Rimet, F., & Bouchez, A. (2012). Life-forms, cell-sizes and ecological guilds of diatoms in European rivers. Knowledge and Management of Aquatic Ecosystems, 406, 1–12.  https://doi.org/10.1051/kmae/2012018.CrossRefGoogle Scholar
  66. Root, R. B. (1967). The niche exploitation pattern of the Blue-Gray Gnatcatcher. Ecological Monographs, 37, 317–350.  https://doi.org/10.2307/1942327
  67. Rott, E., Pipp, E., Pfister, P., Van Dam, H., Ortler, K., Binder, N., & Pall, K. (1999). Indikationslisten für Aufwuchsalgen in Österreichischen Fliessgewassern. Teil 2: Trophieindikation. Vienna: Bundesministerium für Land- und Forstwirtschaft.Google Scholar
  68. Salmaso, F., Quadroni, S., Romanò, A., Compare, S., Gentili, G., & Crosa, G. (2014). Ecological status definition according to D.M. 260/2010 in two lowland rivers (Adda and Ticino) characterized by minimum flow. Biologia Ambientale, 28, 25–37.Google Scholar
  69. Salmaso, F., Quadroni, S., Gentili, G., & Crosa, G. (2017). Thermal regime of a highly regulated Italian river (Ticino River) and implications for aquatic communities. Journal of Limnology, 76, 23–33.  https://doi.org/10.4081/jlimnol.2016.1437.CrossRefGoogle Scholar
  70. Salmaso, F., Crosa, G., Espa, P., Gentili, G., Quadroni, S., & Zaccara, S. (2018). Benthic macroinvertebrates response to water management in a lowland river: effects of hydro-power vs irrigation off-stream diversions. Environmental Monitoring and Assessment, 190, 33.  https://doi.org/10.1007/s10661-017-6390-8.CrossRefGoogle Scholar
  71. Simberloff, D., & Dayan, T. (1991). The guild concept and the structure of ecological communities. Annual Review of Ecology and Systematics, 22, 115–143.  https://doi.org/10.1146/annurev.es.22.110191.000555.CrossRefGoogle Scholar
  72. Soininen, J. (2007). Environmental and spatial control of freshwater diatoms—a review. Diatom Research, 22, 473–490.  https://doi.org/10.1080/0269249X.2007.9705724.CrossRefGoogle Scholar
  73. Stancheva, R., & Sheath, R. G. (2016). Benthic soft-bodied algae as bioindicators of stream water quality. Knowledge and Management of Aquatic Ecosystems, 417, 15.  https://doi.org/10.1051/kmae/2016002.CrossRefGoogle Scholar
  74. Steinman, A. D. (1996). Effects of grazers on freshwater benthic algae. In R. J. Stevenson, M. L. Bothwell, R. J. Lowe, & J. H. Thorp (Eds.), Algal ecology (pp. 341–373). San Diego: Academic Press.CrossRefGoogle Scholar
  75. Stevenson, R. J., & Pan, Y. (1999). Assessing environmental conditions in rivers and streams with diatoms. In F. Stoermer & J. P. Smol (Eds.), The diatoms: Applications for the environmental and earth sciences (pp. 11–40). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  76. Szczepocka, E., Kruk, A., & Rakowska, B. (2015). Can tolerant diatom taxa be used for effective assessments of human pressure? River Research and Applications, 31, 368–378.  https://doi.org/10.1002/rra.2744.CrossRefGoogle Scholar
  77. Tan, X., Ma, P., Bunn, S. E., & Zhang, Q. (2015). Development of a benthic diatom index of biotic integrity (BD-IBI) for ecosystem health assessment of human dominant subtropical rivers, China. Journal of Environmental Management, 151, 286–294.  https://doi.org/10.1016/j.jenvman.2014.12.048.CrossRefGoogle Scholar
  78. Tapolczai, K., Bouchez, A., Stenger-Kovács, C., Padisák, J., & Rimet, F. (2016). Trait-based ecological classifications for benthic algae: review and perspectives. Hydrobiologia, 776, 1–17.  https://doi.org/10.1007/s10750-016-2736-4.CrossRefGoogle Scholar
  79. Vasiljević, B., Simić, S. B., Paunović, M., Zuliani, T., Krizmanić, J., Marković, V., & Tomović, J. (2017). Contribution to the improvement of diatom-based assessments of the ecological status of large rivers—the Sava River case study. Science of the Total Environment, 605, 874–883.  https://doi.org/10.1016/j.scitotenv.2017.06.206.CrossRefGoogle Scholar
  80. Wang, H., Li, Y., Li, J., An, R., Zhang, L., & Chen, M. (2018). Influences of hydrodynamic conditions on the biomass of benthic diatoms in a natural stream. Ecological Indicators, 92, 51–60.  https://doi.org/10.1016/j.ecolind.2017.05.061.CrossRefGoogle Scholar
  81. Wilson, J. B. (1999). Guilds, functional types, and ecological groups. Oikos, 86, 507–522.  https://doi.org/10.2307/3546655.CrossRefGoogle Scholar
  82. Zampella, R. A., Laidig, K. J., & Lowe, R. L. (2007). Distribution of diatoms in relation to land use and pH in Blackwater coastal plain streams. Environmental Management, 39, 369–384.  https://doi.org/10.1007/s00267-006-0041-0.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Theoretical and Applied SciencesUniversity of InsubriaVareseItaly
  2. 2.Department of Science and High TechnologyUniversity of InsubriaVareseItaly
  3. 3.GRAIA srlVareseItaly

Personalised recommendations