Advertisement

Atmospheric depositions affect the growth patterns of Scots pines (Pinus sylvestris L.)—a long-term cause-effect monitoring study using biomarkers

  • Horst Schulz
  • Wolfgang Beck
  • Angela LauschEmail author
Article

Abstract

Recording the causes, effects, and effect mechanisms of vegetation health is crucial to understand process-pattern interactions in ecosystem processes. NOX and SOX in the form of air pollution are both triggers and sources of vegetation health that can have an effect on the local or the global level and whose impacts need to be monitored. In this study, the growth patterns in Scots pines (Pinus sylvestris L.) were studied in the context of changing atmospheric depositions in the lowlands of north-eastern Germany. Under the influence of atmospheric sulfur (S) and nitrogen (N) depositions, pine stands showed temporal variations in their normal growth behavior. In such cases, the patterns of normal growth can be suppressed or accelerated. Pine stands which were influenced by high S deposition up until 1990 changed from suppressed growth to accelerated growth by decreasing S, but increasing N depositions between 1990 and 2003. The cause of these changes in pine growth patterns was imbalances in S and N nutrition, in particular, enrichments of sulfate, non-protein nitrogen or arginine, and finally, also imbalances and deficiencies in phosphorus, glucose, and adenosine triphosphate in the needles. Our long-term monitoring study shows that biochemical markers (traits) are crucial bioindicators for the qualitative and quantitative assessment of tree vitality and growth patterns in Scots pines. Furthermore, we were able to show that NOX and SOX depositions need to be monitored locally to be able to assess the local effects of biomolecular markers on the growth patterns in Scots pine stands.

Keywords

Atmospheric depositions Growth patterns Biochemical markers Scots pine stands 

Notes

Acknowledgements

The authors thank Sigrid Härtling and Renate Rudloff (Department of Soil Ecology, Helmholtz Centre for Environmental Research—UFZ) for their excellent technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Beck, W. (2001). Überlegungen zur Erfassung wachstumskundlicher Kenngrößen auf Level-II-Kiefern-Versuchsflächen. Beiträge für Forstwirtschaft und Landschaftsökologie, 35, 33–36.Google Scholar
  2. Beck, W. (2002). Wachstumsverhalten und Nettoprimärproduktion der Baumschicht. In S. Anders (Ed.), Ökologie und Vegetation der Wälder Nordostdeutschlands (pp. 42–71). Oberwinter: Verlag Dr. Kessel.Google Scholar
  3. Beck, W. (2009). Growth patterns of forest stands—the response towards pollutants and climatic impact. Forest- Biogeosciences and Forestry, 2, 4–6.  https://doi.org/10.3832/ifor0472-002.CrossRefGoogle Scholar
  4. Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., Wardle, D. A., Kinzig, A. P., Daily, G. C., Loreau, M., Grace, J. B., Larigauderie, A., Srivastava, D. S., & Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59–67.  https://doi.org/10.1038/Nature11148.CrossRefGoogle Scholar
  5. Edfast, A. B., Näsholm, T., & Ericson, A. (1990). Free amino acids concentrations in needles of Norway and Scots pine trees on different sites in areas with two levels of nitrogen deposition. Canadian Journal of Forest Research, 20, 1132–1136.CrossRefGoogle Scholar
  6. Eichhorn, J., & Roskams, P. (2013). Assessment of tree conditions. In M. Ferretti & R. Fischer (Eds.), Forest monitoring—methods for terrestrial investigations in Europe with an overview of north America and Asia (Developments in Environmental Science) (Vol. 12, Chapter 8, pp. 139–167). Amsterdam: Elsevier.CrossRefGoogle Scholar
  7. Erhard, M., & Flechsing, M. A. (1998). Landscape model for the investigation of atmogenic pollution effects on the dynamics of Scots pines. In R. F. Hüttl & K. Bellmann (Eds.), Changes of atmospheric chemistry and effects on forest ecosystems (Nutrient in Ecosystems) (Vol. 3, pp. 283–311). London: Kluwer Academics.CrossRefGoogle Scholar
  8. Galic, N., Sullivan, L. L., Grimm, V., & Forbes, V. E. (2018). When things don’t add up: quantifying impacts of multiple stressors from individual metabolism to ecosystem processing. Ecology Letters, 21, 568–577.  https://doi.org/10.1111/ele.12923.CrossRefGoogle Scholar
  9. Huhn, G., & Schulz, H. (1996). Contents of free amino acids in Scots pine needles from field sites with different levels of nitrogen deposition. The New Phytologist, 134, 95–101.CrossRefGoogle Scholar
  10. Joiner, J., Yoshida, Y., Schaefer, K., Jung, M., Guanter, L., Zhabg, Y., Garrity, S., Middelton, E. M., Huemmrich, K. F., Gu, L., & Belelli Marchesini, L. (2014). The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange. Remote Sensing of Environment, 152, 375–391.CrossRefGoogle Scholar
  11. Kraft, S., Del Bello, U., Bouvet, M., Drusch, M., & Moreno, J. (2012). FLEX: ESA’s Earth Explorer 8 candidate mission. Int Geosci Remote Sens Symp. 7125–7128.  https://doi.org/10.1109/IGARSS.2012.6352020.
  12. Lausch, A., Blaschke, T., Haase, D., Herzog, F., Syrbe, R.-U., Tischendorf, L., & Walz, U. (2015). Understanding and quantifying landscape structure—a review on relevant process characteristics, data models and landscape metrics. Ecological Modelling, 295, 31–41.  https://doi.org/10.1016/j.ecolmodel.2014.08.018.CrossRefGoogle Scholar
  13. Lausch, A., Erasmi, S., King, D. J., Magdon, P., & Heurich, M. (2016). Understanding forest health by remote sensing—part I—a review of spectral traits, processes and remote sensing characteristics. Remote Sensing, 8, 1029.CrossRefGoogle Scholar
  14. Lausch, A., Erasmi, S., King, D. J., Magdon, P., & Heurich, M. (2017). Understanding forest health with remote sensing-part II—a review of approaches and data models. Remote Sensing, 9, 129.  https://doi.org/10.3390/rs9020129.CrossRefGoogle Scholar
  15. Lausch, A., Borg, E., Bumberger, J., Dietrich, P., Heurich, M., Huth, A., Jung, A., Klenke, R., Knapp, S., Mollenhauer, H., Paasche, H., Paulheim, H., Pause, M., Schweitzer, C., Schmulius, C., Settele, J., Skidmore, A., Wegmann, M., Zacharias, S., Kirsten, T., & Schaepman, M. (2018a). Understanding forest health with remote sensing, part III: requirements for a scalable multi-source forest health monitoring network based on data science approaches. Remote Sensing, 10, 1120.  https://doi.org/10.3390/rs10071120.CrossRefGoogle Scholar
  16. Lausch, A., Olaf, B., Stefan, K., Leitao, P., Jung, A., Rocchini, D., Schaepman, M. E., Skidmore, A. K., Tischendorf, L., & Knapp, S. (2018b). Understanding and assessing vegetation health by in-situ species and remote sensing approaches. Journal: Methods in Ecology and Evolution, 9, 1799–1809.  https://doi.org/10.1111/2041-210X.13025.CrossRefGoogle Scholar
  17. Lembcke, G., Knapp, E., & Dittmar, O. (1975). DDR-Kiefernertragstafel. Institut für Forstwissenschaften. Eberswalde. 1–30.Google Scholar
  18. Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 1(603), 591–592.CrossRefGoogle Scholar
  19. Lorenz, M., & Becher, G. (2012). Forest condition in Europe, (2012) technical report of ICP forests. Work report of the Thünen Institute for World Forestry 201 2/1. ICP Forests, Hamburg, 201 2.Google Scholar
  20. Lorenz, M., & Mues, V. (2007). Forest health status in Europe. ScientificWorldJournal, 7(Suppl 1), 22–27.  https://doi.org/10.1100/tsw.2007.17.CrossRefGoogle Scholar
  21. Malcolm, D. C., & Garforth, M. F. (1977). The sulphur:nitrogen ratio of conifer foliage in relation to atmospheric pollution with sulphur dioxide. Plant and Soil, 47, 87–96.CrossRefGoogle Scholar
  22. Möller, D., & Schieferdecker, H. (1989). Ammonia emission and deposition of NHx in the G.D.R. Atmospheric Environment, 23, 1187–1193.  https://doi.org/10.1016/0004-6981(89)90145-5.CrossRefGoogle Scholar
  23. Pause, M., Schweitzer, C., Rosenthal, M., Keuck, V., Bumberger, J., Dietrich, P., Heurich, M., Jung, A., & Lausch, A. (2016). In situ and remote sensing integration for the assessment of forest health. Remote Sensing, 2016(8), 471.  https://doi.org/10.3390/rs8060471.CrossRefGoogle Scholar
  24. Schulz, H. (2002). Flächendeckende Erfassung von N-haltigen Depositionen mit Hilfe von Baumborken. In: U. Franko (eds.), Stickstoff - ein Nährstoff aus dem Gleichgewicht. UFZ-Bericht 16, 32–45.Google Scholar
  25. Schulz, H., & Härtling, S. (2003). Vitality analysis of Scots pines using a multivariate approach. Forest Ecology and Management, 186, 73–84.CrossRefGoogle Scholar
  26. Schulz, H., Huhn, G., Niehus, B., Liebergeld, G., & Schüürmann, G. (1997). Determination of throughfall rates on the basis of pine bark loads: results of a field study. Air and Waste Manage Association, 47, 510–516.CrossRefGoogle Scholar
  27. Schulz, H., Huhn, G., & Härtling, S. (1998). Responses of sulphur- and nitrogen-containing compounds in Scots pine needles along a deposition gradient in eastern Germany. In R. F. Hüttl & K. Bellmann (Eds.), Changes of atmospheric chemistry and effects on forest ecosystems (Nutrient in Ecosystems) (Vol. 3, pp. 37–63). London: Kluwer Academics.CrossRefGoogle Scholar
  28. Schulz, H., Giesemann, A., & Gehre, M. (2004). Influence of reduced S inputs on the sulfate pool in the humus layer and sulfate uptake in Pinus sylvestris L. as indicated by natural isotope variations of sulphur and oxygen. Journal of Applied Botany, 78, 18–24.Google Scholar
  29. Schulz, H., Schäfer, T., Storbeck, V., Härtling, S., Rudloff, R., Köck, M., & Buscot, F. (2012). Effect of raw humus under two adult Scots pine stands on ectomycorrhization, nutritional status, N uptake, P uptake and growth of P. sylvestris seedlings. Tree Physiology, 32, 36–48.CrossRefGoogle Scholar
  30. Schulz, H., Gehre, M., & Russow, R. (2017). Natürliche Isotopenverhältnisse des Stickstoffs zur Bioindikation in Kiefern-Wald-Ökosystemen. Hercynia N. F., 50, 99–114.Google Scholar
  31. Tietz, S., & Wild, A. (1991). Investigations on the phosphoenolpyruvate carboxylase activity of spruce needle relative to the occurrence of novel forest decline. Journal of Plant Physiology, 137, 327–331.CrossRefGoogle Scholar
  32. Trumbore, S., Brando, P., & Hartmann, H. (2015). Forest health and global change. Science, 349, 814–818.  https://doi.org/10.1126/science.aac6759.CrossRefGoogle Scholar
  33. Umweltbundesamt. (2011). In: G. Schütze, M. Geupel (Eds.), Stickstoff - Zuviel des Guten? Umweltbundesamt, Dessau-Roßlau. 1–42.Google Scholar
  34. Weidmann, P., Einig, W., Rogger, W., & Hampp, R. (1990). Contents of ATP and ADP in needles of Norway spruce in relation to their development, age and symptoms of forest decline. Trees, 4, 68–74.CrossRefGoogle Scholar
  35. Zöttl, H. (1958). Die Bestimmung der Stickstoffmineralisation im Waldhumus durch den Brutversuch. Z. Pflanzenern. Düngung Bodenk. 81, 35–49.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Soil EcologyHelmholtz Centre for Environmental Research—UFZHalle (Saale)Germany
  2. 2.Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and FischeriesInstitute for Forest Ecology InventoryEberswaldeGermany
  3. 3.Department of Computational Landscape EcologyHelmholtz Centre for Environmental Research—UFZLeipzigGermany
  4. 4.Department of GeographyHumboldt Universität zu BerlinBerlinGermany

Personalised recommendations