Environmental impact of industrial and agricultural activities to the trace element content in soil of Srem (Serbia)

  • Maja Poznanović SpahićEmail author
  • Dragan Manojlović
  • Pavle Tančić
  • Željko Cvetković
  • Zoran Nikić
  • Renata Kovačević
  • Sanja Sakan


This study reports the contents and sources of Cu, Hg, Cr, Ni, Co, Zn, Pb, Cd, As, and B pollution in soil samples from Srem in the province of Vojvodina (Republic of Serbia). They are collected in the vicinity of local industrial facilities. The main objective of this study is evaluating the impact of the industrial facilities on the eventual contamination of soils used mostly for agricultural manufacturing. This paper describes the implementation of the combination of methods to estimate the ecological status and determine potential ecological risk. This study applies sequential extraction, pollution indices, comparison with the guidelines, and statistical analysis. Other soil parameters, such as organic matter content, pH, and clay content were measured to evaluate their influence on the trace element content. The investigated soil samples exhibited the raised contents of Ni, Hg, and Cu. Elevated contents of toxic elements observed in localities accommodated within an impact zone affected by industrial complexes, indicating a correlation between the contamination of surrounding soil and potential impact on plants. The most mobile elements are Hg, Cd, and B, while Cr is the least mobile and potential least bioavailable. The results indicate Cr and Ni content increase marking the presence of bedrock, notably in the area of underlying ultramafic rocks and the surface zones influenced by diluvial-proluvial and alluvial processes. The second source of Cr and Ni in the soils of Srem is industrial activities such as leather, cement industry, as well as the metal processing factory.


Trace elements Srem Soils Origin Kspef Mobility factor 



We would like also to thank Sandra Škrivanj for helping in obtained analytical results, Dr. Darko Spahić and Dr. Jovan Kovačević for kindness, helpful advice, and instructions.

Funding information

This study was partly funded by the Provincial Secretariat for Energy and Mineral Resources. Dr. Sanja Sakan thanks for the support of the Ministry of Science and Technological Development of the Republic of Serbia (grant no. 172001).

Supplementary material

10661_2019_7268_MOESM1_ESM.docx (413 kb)
ESM 1 (DOCX 413 kb)


  1. Albanese, S., Segedhi, M., Lima, A., Cicchella, D., Dinelli, E., Valera, P., et al. (2015). GEMAS: Cobalt, Cr, Ni Cu distribution in agricultural and grazing land soil of Europe. Journal of Geochemical Exploration, 154, 81–93.CrossRefGoogle Scholar
  2. Arsikin, P., & Čongradac, G. (1979). Nonmetallic mineral resources of Vojvodina. In 2nd conference of nonmetallic mineral resources in SFRJ, Proceedings II (pp. 441-464).Google Scholar
  3. Ashraf, M. A., Maah, M. J., & Yusoff, I. (2012). Chemical speciation and potential mobility of heavy metals in the soil of former Tin mining catchement, The Scientific World Journal, 2012. Article ID 125608, 11 pages,
  4. Babič, D. (2003). Mineralogy. Belgrade: Cicero.Google Scholar
  5. Bacon, J. R., & Davidson, C. M. (2008). Is there a future for sequential chemical extraction? Analyst, 133, 25–46.CrossRefGoogle Scholar
  6. Baez, P. A., Garcia, M. R., Del Tores, B. M., Padilla, H. G., Belmot, R. D., Amandor, O. M., & Villalobos-Piertini, R. (2007). Origin of trace elements and inorganic ions in PM10 aerosols to the S. Mexico city. Atmospheric Research, 85, 52–63.CrossRefGoogle Scholar
  7. Banat, K. M., Howary, F. M., & Al-Hamad, A. A. (2005). Heavy metals in urban soils of central Jordan: Should be worry about their environmental risks? Environmental Research, 97, 258–273.CrossRefGoogle Scholar
  8. Birke, M., Reimann, C., Rauch, U., Ladenberger, A., Demetriades, A., Jahne-Klingberg, F., Oorts, K., Gosar, M., Dinelli, E., Halamić, J., & The GEMAS project team. (2017). GEMAS: Cadmium distribution and its sources in agricultural and grazing land soil of Europe - Original data versus clr-transformed data. Journal of Geochemical Exploration, 173, 13–30.CrossRefGoogle Scholar
  9. Bodaghpour, S., Biglari, J. N., & Ahmadi, S. (2012). A review on the existence of chrome in cement and environmental remedies to control its effects. International Journal of Geology, 2(6), 62–67.Google Scholar
  10. Bogdanović, D., Ubavić, M., & Hadžić, V. (1997). Heavy metals in soils. In R. Kastori (Ed.), Heavy metals in the environment (pp. 103–143). Novi Sad: Feljton.Google Scholar
  11. Brankov, M., Ubavić, M., Sekulić, P., & Vasin, J. (2006). Trace elements and heavy metal contents of agricultural and nonagricultural soils in the region of Banat. Institute of Field and Vegetable Crops Proceedings, 42, 169–177.Google Scholar
  12. Cai, J., Cao, Y., Tan, H., Wang, Y., & Luo, J. (2011). Fractionation and ecological risk of metals in urban river sediments in Zhongshan city, Pearl river delta. Journal of Environmental Monitoring, 13, 2450–2456.CrossRefGoogle Scholar
  13. Cai, L., Xu, Z., Ren, M., & Peng, P. (2012). Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong province, China. Ecotoxicology and Environmental Safety, 78, 2–8.CrossRefGoogle Scholar
  14. Cai, L., Xu, Z., Bao, P., He, M., Dou, L., Chen, L., Zhou, Y., & Zhu, Y. G. (2015). Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. Journal of Geochemical Exploration, 148, 189–195.CrossRefGoogle Scholar
  15. Dheeba, B., & Sampathkumar, P. (2012). Evaluation of heavy metal contamination in surface soil around industrial area.Tamil Nadu, India. International Journal of ChemTech Research, 4(3), 1229–1240.Google Scholar
  16. De Vivo, B., Albanese, S., Lima, S., Reimann, C., Birke, M., Schoeters, L., Demetriades, A. & GEMAS project team. (2012).The GEMAS project: Geochemistry of European agricultural and grazing land soils, 7th EUREGEO 2012, Proceedings, session 10, 654.
  17. Dimitrijević, M. D. (1997). Geology of Yugoslavia. Belgrade: Geological Institute GEMINI.Google Scholar
  18. Dozet, D., Nešić, L.j., Belić, M., Bogdanović, D., Ninkov, J., & Zeremski, T. (2011). Origin and content of Ni in alluvial-delluvial soils of Srem, Serbia. Field and Vegetable Crops Research, 48, 369–374.Google Scholar
  19. Ministerie van VolkshuisvestingRuimtelijkeOrdeningenMilieubeheer, 2000. Dutch target and intervention.Google Scholar
  20. EuroGeoSurveys Geochemistry Working Group. (2008). EuroGeoSurveys geochemical mapping of agricultural and grazingland soil of Europe (GEMAS)-fieldmanual. Accessed 3 Novembar 2017.
  21. Ghariani, R. A., Gržetić, I., & Nikolić, S. (2009). Distribution and availability of potentially toxic metals in soil in central area of Belgrade (Serbia). Environmental Chemical Letters, 8, 261–269.CrossRefGoogle Scholar
  22. Ghorbani, H., Aghababaei, A., & Mirkarimi, H. R. (2013). The evaluation of industrial cement production plant on the environmental pollution using magnetic susceptibility technique. Agricultural Sciences, 4(12), 792–799.CrossRefGoogle Scholar
  23. Gitet, H., Subramanian, P. A., Minilu, D., Kiros, T., Hilawe, M., Gebremedhin, G., & Taye, K. (2013). Speciation to chromium in soils near Sheeba leather industry, Wukro Ethiopia. Talanta, 116, 626–629.CrossRefGoogle Scholar
  24. Giuseppe, D. D., Antisari, L. V., Ferronato, C., & Bianchini, G. (2014). New insights on mobility and bioavailability of heavy metals in soils of the Padanian alluvial plain (Ferrara Province, northern Italy). Chemie der Erde, 74, 615–623.CrossRefGoogle Scholar
  25. Government of Western Australia. (2010). Аssessment level for soil sediment and water. Department of Environment and: Conservation.Google Scholar
  26. Grygar, M. T., & Popelka, J. (2016). Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments. Journal of Geochemical Exploration, 170, 39–57.CrossRefGoogle Scholar
  27. Han, F. X., Banin, A., Kingery, W. L., & Triplett, G. B. (2001). Redistribution of heavy metals in arid zone soils under wetting-drying cycle soil moisture regime. Soil Science, 166(1), 18–28.CrossRefGoogle Scholar
  28. Hawkes, H. E., & Web, J. S. (1962). Geochemistry in mineral exploration. New York and Evanson: Harper and row publishers.Google Scholar
  29. Huang, S. W., & Jin, J. Y. (2008). Status of heavy metals in agricultural soils as affected by different patterns of land use. Environmental Monitoring and Assessment, 139, 317–327.CrossRefGoogle Scholar
  30. Huang, W. T. (1967). Petrology. New York: Mc Graw-Hill book Co..Google Scholar
  31. Jakšić, S., Sekulović, P., & Vasin, J. (2012). Content of heavy metals in gleyicchernozem of Srem loess terrace under alfalfa. Field Vegetable and Crops Research, 49(2), 189–194.Google Scholar
  32. Kabata-Pendias, A. (2011). Trace elements in soils and plants. New York: CRC press, Taylor and Francis Group.Google Scholar
  33. Kalenić, M., Filipović, I., Mirković, B., Dolić, D., Rakić, M., & Gajić, R. (2000). Geological map of Yugoslavia. Belgrade: Geological Survey of Serbia.Google Scholar
  34. Karim, Z., Qureshi, B. A., Mumtaz, M., & Qureshi, S. (2014). Heavy metal content in urban soils as an indicator of anthropogenic and natural influences on landscape of Karachi – a multivariate spatio-temporal analysis. Ecological Indicators, 42, 20–31.CrossRefGoogle Scholar
  35. Kashem, M. D. A., & Singh, B. R. (1999). Heavy metal contamination of soil and vegetation in the vicinity of industries in Bangladesh. Water, Air, and Soil Pollution, 115, 347–361.CrossRefGoogle Scholar
  36. Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 181, 247–268.CrossRefGoogle Scholar
  37. Kiercak, J., Pȩdziwiatr, A., Waroszewski, J., & Modelska, M. (2016). Mobility of Ni, Cr and Co in serpentinite soils derived on various ultrabasic bedrock under temperature climate. Geoderma, 268, 78–91.CrossRefGoogle Scholar
  38. Krishna, A. K., & Govil, P. K. (2007). Soil contamination due to heavy metals from an industrial area of Surat, Gujarat, Western India. Environmental Monitoring and Assessment, 124, 263–275.CrossRefGoogle Scholar
  39. Ladenberger, A., Reimann, C., Scanion, R., De Vivo, B., Falconi, M., & GEMAS project team (2016). GEMAS: mapping zink deficiency in agricultural and grazing land soil in Europe. 3rd International symposium on environmental & health. Accessed 29 Octobar 2018.
  40. Leleyter, L., Rousseau, C., Biree, L., & Baraud, F. (2012). Comparison of EDTA, HCl and sequential extraction procedures, for selected metals (Cu, Mn, Pb, Zn) in soils, riverine and marine sediments. Journal of Geochemical Exploration, 116-117, 51–59.CrossRefGoogle Scholar
  41. Lu, Y., Zhu, F., Chen, J., Gan, H., & Guo, Y. (2007). Chemical fractionation of heavy metals in urban soils of Guangzhou, China. Environmental Monitoring and Assessment, 134, 429–439.CrossRefGoogle Scholar
  42. Mahanta, M. J., & Bhatacharyya, K. G. (2011). Total concentration, fractionation, mobility of heavy metals in soils of urban area of Guwahanti, India. Environmental Monitoring and Assessment, 173, 221–240.CrossRefGoogle Scholar
  43. Maksimović, L., Milošević, N., Nešić, L., Zeremski, T., Vasin, J., & Ninkov, J. (2012). Soil contamination in South Bačka Region of Serbia with dangerous and harmful substances. Field Vegetable and Crops Research, 49(2), 220–228.Google Scholar
  44. Maura de Miranda, R., Andrade de Fatima, M., Fornaro, A., Astolfo, R., Afonso de Andre, P., & Saldiva, P. (2012). Urban air pollution: a representative survey of PM2.5 mass concentrations in six Brazilian cities. Air Quality Atmosphere and Health, 5, 63–77.CrossRefGoogle Scholar
  45. Mico, C., Peris, M., Sanchez, J., & Recatala, L. (2016). Heavy metal content of agricultural soils in Mediterranean semiarid area: the Segura river valley (Alicante, Spain). Spanish Journal of Agricultural Research, 4(4), 363–372.CrossRefGoogle Scholar
  46. Nable, R. O., Banuelos, G. S., & Paulli, G. J. (1997). Boron toxicity. Plant and Soil, 193, 181–198.CrossRefGoogle Scholar
  47. Nelson, S. A. (2014). Weathering and clay minerals. Tulane University. Accessed 10 September 2017.
  48. Ngole, V. M. (2011). Using soil heavy metals enrichment and mobility factors to determine potential aptake by vegetables. Plant, Soil and Environment, 57(1), 75–80.CrossRefGoogle Scholar
  49. Nelson, P. F., Shah, P., Stezov, V., Halliburton, B., & Carras, J. N. (2010). Environmental impacts of coal combustion: a risk approach to assessment of emissions. Fuel, 89, 810–816.CrossRefGoogle Scholar
  50. Ninkov, J., Zeremski-Škorić, T., Sekulić, P., Vasin, J., Milić, S., & Paprić, Đ. (2010). Heavy metals in vineyard soils of Vojvodina province. Field Vegetable and Crops Research, 47(1), 273–279.Google Scholar
  51. Ninkov, J., Milić, S., Vasin, J., Kicošev, V., Sekulić, P., Zeremski, T., & Maksimović, L. (2012). Heavy metal in soil and sediments of the planned ecological network of Central Banat, Serbia. Field Vegetable and Crops Research, 49, 17–23.Google Scholar
  52. Offical Gazzete, Republic Serbia 1994., No. 23.Google Scholar
  53. Official Gazette of the Republic Serbia 2010., No. 88.Google Scholar
  54. Окоnkwo, J. O. (2007). Arsenic status and distribution in soils at disused cattle dip in South Africa. Bulletin of Environmental Contamination and Toxicology, 79, 380–383.CrossRefGoogle Scholar
  55. Orešković, Z., & Gašić, S. (2005). Bordeaux mixture-a comparative investigation of different formulation. Pesticide and Phytomedicine, 20, 255–259.Google Scholar
  56. Ottesen, R. T., Birke, M., Finne, T. R., Gosar, M., Locutura, J., Reimann, C., Tarvainen, T., & The GEMAS project team. (2013). Mercury in European agricultural and grazing land soil. Applied geochemistry, 33, 1–12.CrossRefGoogle Scholar
  57. Panagopoulos, I., Karayannis, A., Kollias, K., Xenidis, A., & Papassiopi, N. (2015). Investigations of potential soil contamination with Cr and Ni in four metal finishing facilities at Asopos industrial area. Journal of Hazardous Materials, 281, 20–25.CrossRefGoogle Scholar
  58. Popović, Z. (1994). Agrochemistry. Belgrade: University of Belgrade.Google Scholar
  59. Popović, A., Đorđević, D., & Polić, P. (2001). Trace and major element pollution origination from coal ash suspension and transport processes. Environmental International, 26, 251–255.CrossRefGoogle Scholar
  60. Popović, V., Djukić, V., & Dozet, G. (2008). Distribution and accumulation of Pb in soils and wheat, 2nd joint PSU-UNS international conference in bioscience: food, agriculture, environment. Proceedings, Novi Sad. pp 292–296.Google Scholar
  61. Poznanović Spahić, M., Sakan, S., Cvetković, Ž., Tančić, P., Trifković, J., Nikić, Z., & Manojlović, D. (2018). Assessment of contamination, environmental risk, and origin of heavy metals in soils surrounding industrial facilities in Vojvodina (Serbia). Environmental Monitoring and Assessment, 190, 208. Scholar
  62. Reimann, C., Flem, B., Fabian, K., Birke, M., Ladenberger, A., Negrel, P., Demetriades, A., Hoogewerff, J., & The GEMAS Project team. (2012). Lead and lead isotopes in agricultural soils of Europe-the continental perspective. Applied Geochemistry, 27, 532–542.CrossRefGoogle Scholar
  63. Relić, D., Đorđević, D., Popović, A., & Blagojević, T. (2005). Speciation of trace metals in the Danube alluvial sediment within an oil rafinery. Environmental International, 31, 661–669.CrossRefGoogle Scholar
  64. Rodriguez, L., Ruiz, E., Alonso-Azkarate, J., & Rincon, J. (2009). Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. Journal of Environmental Management, 90, 1106–1116.CrossRefGoogle Scholar
  65. Sakan, S., Gržetic, I., & Đorđević, D. (2007). Distribution and fractionation of heavy metals in the Tisa river sediments. Environmental Science and Pollution Research, 14(4), 229–237.CrossRefGoogle Scholar
  66. Sakan, S., Đorđević, S., Manojlović, D., & Polić, P. (2009). Assessment of heavy metal pollutants accumulation in the Tisza river sediments. Journal of Environmental Management, 90, 3382–3390.CrossRefGoogle Scholar
  67. Sakan, S. (2010). A new approach of microelements utilization as tracers for identifications and differentiation of anthropogenic influence and background values. Chemical Faculty: University of Belgrade.Google Scholar
  68. Sakan, S., Djordjević, S. D., & Trifunović, S. S. (2011). Geochemical and statistical methods in the evaluation of trace elements contamination: an application on canal sediments. Polish Journal of Environmental Studies, 20(1), 187–199.Google Scholar
  69. Sakan, S., Popović, A., Anđelković, I., & Đorđević, D. (2016). Aquatic sediments pollution estimate using the metal fractionation secondary phase enrichment factor calculation and used statistical methods. Environmental Geochemistry and Health, 38, 855–867.CrossRefGoogle Scholar
  70. Sarkar, A., Rano, R., Udaybhanu, G., & Basu, A. K. (2006). A comprehensive characterization of fly ash from thermal power plant in Eastern India. Fuel Processing Technology, 87, 259–277.CrossRefGoogle Scholar
  71. Sekaran, G., Shanmugasundaram, K. A., & Mariappan, M. (1998). Characterization and utilization of buffing dust generated by the leather industry. Journal of Hazardous Materials B, 63(1), 53–68.CrossRefGoogle Scholar
  72. Shah, P., Stezov, V., Prince, K., & Nelson, P. T. (2008). Speciation of As, Cr, Se and Hg under coal fired power station conditions. Fuel, 87, 1859–1869.CrossRefGoogle Scholar
  73. Shomar, B. H., Müller, G., & Yahya, A. (2005). Geochemical features of topsoil in Gaza Strip: natural occurrence and anthropogenic inputs. Environmental Research, 98, 375–382.CrossRefGoogle Scholar
  74. Silveira, M. L., Alleoni, L. R. F., O’Connor, G. A., & Chang, A. C. (2006). Heavy metal sequential extraction methods-a modification for tropical soils. Chemosphere, 64, 1929–1938.CrossRefGoogle Scholar
  75. Slezakova, K., Pereira, M. C., & Reis, M. A. (2007). Influence of traffic emissions on the composition of atmospheric particles of different sizes – Part 1: Concentrations and elemental characterization. Journal of Atmospheric Chemistry, 58, 55–68.CrossRefGoogle Scholar
  76. Sofilić, T., Bertić, B., Šimunić-Meznarić, V., Brnardić, I. (2013). Soil pollution as the results of temporary steel scrap storage at the melt shop. Ecologica Balkanica, 5, 21-30. Accessed 3 Decembar 2018.
  77. Stanić, M. M. (2004). Hydrochemical distribution of water bearing layers per zones in Srem. Serbia: Geological Faculty, University of Belgrade.Google Scholar
  78. Stering, R. O., & Herble, J. J. (2003). Reaction of arsenic vapor species with fly ash compounds: kinetics and speciation of the reaction with calcium silicates. Chemosphere, 51, 1111–1119.CrossRefGoogle Scholar
  79. Tančić, N. (1994). Pedology. Belgrade: University of Belgrade.Google Scholar
  80. Tariq, S. R., Shah, M. H., Shaheen, N., Khalique, A., Manzoor, S., & Jaffar, M. (2005). Multivariate analysis of selected metals in tannery effluents and related soil. Journal of Hazardous Material A, 122, 17–22.CrossRefGoogle Scholar
  81. Tarvainen, T., Albanese, S., Birke, M., Ponavič, M., Reimann, C., & The GEMAS project team. (2013). Arsenic in agricultural and grazing land soils of Europe. Applied Geochemistry, 28, 2–12.CrossRefGoogle Scholar
  82. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.CrossRefGoogle Scholar
  83. Ungureanu, T., Iancu, G. O., Pintilei, M., & Chicoş, M. M. (2017). Spatial distribution and geochemistry of heavy metals in soils: a case study from the NE area of Vasluicounty, Romania. Journal of Geochemical Exploration, 176, 20–32.CrossRefGoogle Scholar
  84. Venturelly, G., Contini, S., & Bonazzi, A. (1997). Weathering of ultramafic rocks and element mobility at Mt. Prinzera, Noirthern Apennines, Italy. Mineralogical Magazine, 61, 765–778.CrossRefGoogle Scholar
  85. Vinogradov, A. P. (1958). The geochemistry of rare and dispersed chemical elements in soils. New York: Consultants Bureau.Google Scholar
  86. Yang, Y., Chen, F., Zhang, L., Lin, J., Wu, S., & Kang, M. (2012). Comprehensive assessment of heavy metal contamination in sediment of the Pearl river estuary and adjacent shelf. Marine Pollution Bulletin, 64, 1947–1955.CrossRefGoogle Scholar
  87. Yong, L., Huifeng, W., Xiaoting, L., & Jinchang, L. (2015). Heavy metal contamination of agricultural soil in Tayiuan, China. Pedosphere, 25(6), 901–909.CrossRefGoogle Scholar
  88. Yongming, H., Peixuan, D., Junji, C., & Postmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Science of the Total Environment, 355, 176–186.CrossRefGoogle Scholar
  89. Zimmerman, A. J., & Weindorf, D. C. (2010). Heavy metal and trace metal analysis in soil by sequential extraction: a review of procedures. International Journal of Analytical Chemistry.
  90. Živković, B., Nejgebauer, V., & Tanasijević, D. (1972). Soils of Vojvodina. Novi Sad: Institute for agricultural research.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maja Poznanović Spahić
    • 1
    Email author
  • Dragan Manojlović
    • 2
    • 3
  • Pavle Tančić
    • 1
  • Željko Cvetković
    • 1
  • Zoran Nikić
    • 4
  • Renata Kovačević
    • 5
  • Sanja Sakan
    • 6
  1. 1.Geological Survey of SerbiaBelgradeSerbia
  2. 2.Faculty of ChemistryUniversity of BelgradeBelgradeSerbia
  3. 3.South Ural State UniversityChelyabinskRussia
  4. 4.Faculty of ForestryUniversity of BelgradeBelgradeSerbia
  5. 5.Mining and Metallurgy InstituteBorSerbia
  6. 6.Center of Excellence in Environmental Chemistry and Engineering, Institute for Chemistry, Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations