Chemical characterization of vines grown in incipient volcanic soils of Fogo Island (Cape Verde)

  • Rosa MarquesEmail author
  • Maria Isabel Prudêncio
  • Maria Manuela Abreu
  • Dulce Russo
  • José G. Marques
  • Fernando Rocha


Climate and rich volcanic soils of Fogo Island (Cape Verde) are optimal conditions for grape agriculture. This study aims a first evaluation of the bioaccumulation of essential and non-essential elements in different parts of vines of the same variety (Vitis vinifera L.), grown on recent pyroclasts and lahar deposits. Chemical composition was obtained by instrumental neutron activation analysis. A general decrease of the chemical contents occurs in the following order: barks, leaves, and grapes. Lower chemical contents were found in the grapes cultivated on the lahar deposit, except for barium. Potassium and bromine are the most accumulated. A tendency for lower transfer coefficients and enrichment factors (EF) of the chemical elements studied occur in vines grown in lahar. Significant EF of the majority of the elements studied were observed, particularly in leaves and grapes. Among the rare earth elements (REE), the heavy ones are significantly enriched in grapes. Slight positive Eu anomalies occur, which can be explained as inherited from the soil, and by a preferential uptake of Eu2+, replacing Ca2+. Among potential harmful chemical elements, significant EF (> 10) for Cr, As, Sb, W, and U in the two vines occur. Although its low concentration, the results obtained point to U bioavailability. The bioaccumulation of some chemical elements in vines from Fogo Island may be due to several factors of geogenic/natural origin, namely soil composition, airborne fine particles, and the climatic conditions of aridity with a potential availability when raindrops fall.


Volcanic soils Vines Trace elements Bioaccumulation INAA 



Grateful acknowledgments are made to, to the Laboratory of Nuclear Engineering (LEN) and also to the staff of the Portuguese Research Reactor (RPI) of CTN/IST for their assistance with the neutron irradiations.

Funding information

Financial support made by the project UID/GEO/04035/2013. C2TN/IST authors received support from FCT (Fundação para a Ciência e a Tecnologia) through the UID/Multi/04349/2013 project.


  1. Abreu, M. M., Godinho, B., & Magalhães, M. C. F. (2014). Risk assessment of Arbutus unedo L. fruits from plants growing on contaminated soils in the Panasqueira mine area, Portugal. Journal of Soils and Sediments, 14(4), 744–757.CrossRefGoogle Scholar
  2. Alloway, B.J. (1995). Heavy metals in soils. Published by Chapman & Hall. 2nd edition, UK. ISBN 0751401986.Google Scholar
  3. Amorós, J. A., Pérez-de-los-Reyes, C., Navarro, F. J. G., Bravo, S., Chacon, J. L., Martinez, J., & Ballesta, R. J. (2013). Bioaccumulation of mineral elements in grapevine varieties cultivated in “La Mancha”. Journal of Plant Nutrition and Soil Science, 176, 843–850.CrossRefGoogle Scholar
  4. Ashley, P. M., Craw, D., Graham, B. P., & Chappell, D. A. (2003). Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand. Journal of Geochemical Exploration, 77(1), 1–14.CrossRefGoogle Scholar
  5. Babula, P., Adam, V., Opatrilova, R., Zehnalek, J., Havel, L., & Kizek, R. (2008). Uncommon heavy metals, metalloids and their plant toxicity: a review. Environmental Chemistry Letters, 6(4), 189–213.CrossRefGoogle Scholar
  6. Censi, P., Saiano, F., Pisciotta, A., & Tuzzolino, N. (2014). Geochemical behaviour of rare earths in Vitis vinífera grafted onto different rootstocks and growing on several soils. Science of the Total Environment, 473-474, 597–608.CrossRefGoogle Scholar
  7. Chiarenzelli, J. R., Aspler, L. B., Dunn, C., Cousens, B., Ozarko, D. L., & Powis, K. B. (2001). Multi-element and rare earth element composition of lichens, mosses, and vascular plants from the central Barrenlands, Nunavut, Canada. Applied Geochemistry, 16(2), 245–270.CrossRefGoogle Scholar
  8. Costa, F.L. (2011). Volcanic geomorphosites assessment of the last eruption, on April to May 1995, within the natural park of Fogo Island, Cape Verde. GeoJournal of Tourism and Geosites, 8 (2), 167–177.Google Scholar
  9. D’Antone, C., Punturo, R., & Vaccaro, C. (2017). Rare earth elements distribution in grapevine varieties grown on volcanic soils: an example from Mount Etna (Sicily, Italy). Environmental Monitoring and Assessment, 189, 160.CrossRefGoogle Scholar
  10. D’Antone, C. (2016). Absorption of rare earth elements in grapevine raised in volcanic and carbonate soils. Plinius, 42, 27–33.Google Scholar
  11. Dias, M. I., Prudêncio, M. I., Gouveia, M. A., Trindade, M. J., Marques, R., Franco, D., Raposo, J., Fabião, C. S., & Guerra, A. (2010). Chemical tracers of Lusitanian amphorae kilns from the Tagus estuary (Portugal). Journal of Archaeological Science, 37, 784–798.CrossRefGoogle Scholar
  12. Doelsch, E., Van de Kerchove, V., & Macary, H. S. (2006). Heavy metal content in soils of Réunion (Indian Ocean). Geoderma, 134, 119–134.CrossRefGoogle Scholar
  13. Fernandes, A. C., Santos, J. P., Marques, J. G., Kling, A., Ramos, A. R., & Barradas, N. P. (2010). Validation of the Monte Carlo model supporting core conversion of the Portuguese research reactor (RPI) for neutron fluence rate determinations. Annals of Nuclear Energy, 37, 1139–1145.CrossRefGoogle Scholar
  14. Fortes, A. R. (2011). Actividade vitivinícola e rendimento na Ilha do Fogo em Cabo Verde. Msc Thesis, 50.Google Scholar
  15. Galinha, C., Freitas, M. C., & Pacheco, A. M. G. (2010). Enrichment factors and transfer coefficients from soil to rye plants by INAA. Journal of Radioanalytical and Nuclear Chemistry, 286, 583–589.CrossRefGoogle Scholar
  16. Govindaraju, K. (1994). Compilation of working values and sample description for 383 geostandards. Geostandards Newsletter, 18, 1–158.CrossRefGoogle Scholar
  17. Jones, G. V., Snead, N., & Nelson, P. (2004). Geology and wine 8. Modeling viticultural landscapes: a GIS analysis of the terroir potential in the Umpqua Valley of Oregon. Geoscience Canada, 31(4) ISSN 1911–4850. Date accessed: 01 mar. 2017.
  18. Koutsospyros, A., Braida, W., Christodoulatos, C., Dermatas, D., & Strigul, N. (2006). A review of tungsten: From environmental obscurity to scrutiny. Journal of Hazardous Materials, 136(1), 1–19.CrossRefGoogle Scholar
  19. Madeira, J., Brum da Silveira, A., Mata, J., Mourão, C., & Martins, S. (2008). The role of mass movements on the geomorphologic evolution of island volcanoes: examples from Fogo and Brava in the Cape Verde archipelago. Comunicações Geológicas, 95, 93–106.Google Scholar
  20. Marques, R., Prudêncio, M. I., Dias, M. I., & Rocha, F. (2011). Patterns of rare earth and other trace elements in different size fractions of clays of Campanian–Maastrichtian deposits from the Portuguese western margin (Aveiro and Taveiro formations). Chemie der Erde, 71, 337–347.CrossRefGoogle Scholar
  21. Marques, R., Prudêncio, M. I., Rocha, F., Cabral Pinto, M. M. M. S., Silva, M. V. G., & Ferreira Da Silva, E. (2012). REE and other trace and major elements in the topsoil layer of Santiago island, Cape Verde. Journal of African Earth Sciences, 64, 20–33.CrossRefGoogle Scholar
  22. Marques, R., Waerenborgh, J. C., Prudêncio, M. I., Dias, M. I., Rocha, F., & Ferreira da Silva, E. (2014). Iron speciation in volcanic topsoils from Fogo island (Cape Verde)-iron oxide nanoparticles and trace elements concentrations. Catena, 113, 95–106.CrossRefGoogle Scholar
  23. Marques, R., Prudêncio, M. I., Waerenborgh, J. C., Rocha, F., Ferreira da Silva, E., Dias, M. I., Madeira, J., Vieira, B. J. C., & Marques, J. G. (2016). Geochemical fingerprints in topsoils of the volcanic Brava island, Cape Verde. Catena, 147, 522–535.CrossRefGoogle Scholar
  24. Marques, R., Prudêncio, M. I., Freitas, M. C., Dias, M. I., & Rocha, F. (2017a). Chemical element accumulation in tree bark grown in volcanic soils of Cape Verde—a first biomonitoring of Fogo Island. Environmental Science and Pollution Research, 24(13), 11978–11990.CrossRefGoogle Scholar
  25. Marques, R., Prudêncio, M. I., Waerenborgh, J. C., Rocha, F., Ferreira da Silva, E., Dias, M. I., Vieira, B. J. C., Marques, J. G., & Franco, D. (2017b). Volcanic conduits of the Chã das Caldeiras caldera (Fogo Island, Cape Verde)—REE and Fe crystalchemistry. Procedia Earth and Planetary Science, 17, 928–931.CrossRefGoogle Scholar
  26. Mata, J., Martins, S., Mattielli, N., Madeira, J., Faria, B., Ramalho, R. S., Silva, P., Moreira, M., Caldeira, R., Moreira, M., Rodrigues, J., & Martins, L. (2017). The 2014–15 eruption and the short-term geochemical evolution of the Fogo volcano (Cape Verde): evidence for small-scale mantle heterogeneity. Lithos, 288-289, 91–107.CrossRefGoogle Scholar
  27. McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In geochemistry and mineralogy of the rare earth elements, I.R. Lipin & G.A. McKay eds. Review of Mineralogy, 21(1), 169–200.Google Scholar
  28. Miao, L., Xu, R., Ma, Y., Zhu, Z., Wang, J., Cai, R., & Chen, Y. (2008). Geochemistry and biogeochemistry of rare earth elements in a surface environment (soil and plant) in South China. Environmental Geology, 56, 225–235.CrossRefGoogle Scholar
  29. Miravet, R., López-Sánchez, J. F., Rubio, R., Smichowski, P., & Polla, G. (2007). Speciation analysis of antimony in extracts of size-classified volcanic ash by HPLC-ICP-MS. Analytical and Bioanalytical Chemistry, 387(5), 1949–1954.CrossRefGoogle Scholar
  30. Mota Gomes, A. (2006). A problemática da Geologia e dos Recursos Hídricos na Ilha do Fogo. Relatório inédito, Praia, Cabo Verde.Google Scholar
  31. Neall, V. E. (2007). Volcanic soils, in land use and land cover, honorary theme editor(s), in encyclopedia of life support systems (EOLSS), developed under the auspices of the UNESCO. Oxford: Eolss Publishers.Google Scholar
  32. Neves, M. O., Figueiredo, V. R., & Abreu, M. M. (2012a). Transfer of U, Al and Mn in the water–soil–plant (Solanum tuberosum L.) system near a former uranium mining area (Cunha Baixa, Portugal) and implications to human health. Science of the Total Environment, 416, 156–163.CrossRefGoogle Scholar
  33. Neves, M. O., Abreu, M. M., & Figueiredo, V. (2012b). Uranium in vegetable foodstuffs: should residents near the Cunha Baixa uranium mine site (central northern Portugal) be concerned? Environmental Geochemistry and Health, 34(2), 181–189.CrossRefGoogle Scholar
  34. Olehowski, C., Naumann, S., Fischer, D., & Siegmund, A. (2008). Geoecological spatial pattern analysis of the island of Fogo (Cape Verde). Global and Planetary Change, 64, 188–197.CrossRefGoogle Scholar
  35. Orescanin, V., Katunar, A., Kutle, A., & Valkovic, V. (2003). Heavy metals in soil, grape and wine. Journal of Trace and Microprobe Techniques, 21(1), 171–180.CrossRefGoogle Scholar
  36. Parelho, C., Rodrigues, A. S., Cruz, J. V., & Garcia, P. (2014). Linking trace metals and agricultural land use in volcanic soils—a multivariate approach. Science of the Total Environment, 496, 241–247.CrossRefGoogle Scholar
  37. Prudêncio, M. I. (2007). Biogeochemistry of trace and major elements in a surface environment (volcanic rock, soil, mosses, lichens) in the S. Miguel Island, Azores, Portugal. Journal of Radioanalytical and Nuclear Chemistry, 271(2), 431–437.CrossRefGoogle Scholar
  38. Prudêncio, M. I., Valente, T., Marques, R., Sequeira Braga, M. A., & Pamplona, J. (2015). Geochemistry of rare earth elements in a passive treatment system built for acid mine drainage remediation. Chemosphere, 138, 691–700.CrossRefGoogle Scholar
  39. Reimann, C., Matschullat, J., & Salminen, R. (2010). Antimony in the environment: lessons from geochemical mapping. Applied Geochemistry, 25(2), 175–198.CrossRefGoogle Scholar
  40. Ribeiro de Lima, M. T., Cabanis, M. T., Cassana, G., Matos, L., Pinheiro, J., Cabanis, J. C., & Blaise, A. (2003). Volcanic soils composition impact on the major mineral elements content of grapes and wines. Journal international des sciences de la vigne et du vin, 37(3), 171–179.Google Scholar
  41. Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(5), 739–753.CrossRefGoogle Scholar
  42. Skeffington, R. A., Shewry, P. R., & Peterson, P. J. (1976). Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta, 132(3), 209–214.CrossRefGoogle Scholar
  43. Shoji, S., Takahashi, T. (2002). Environmental and agricultural significance of volcanic ash soils. Global Environ. Res. 6(2), 113–135 (English edition).Google Scholar
  44. Sousa, E. C., Uchôa-Thomaz, A. M. A., Carioca, J. O. B., Morais, S. M., Lima, A., Martins, C. G., Alexandrino, C. D., Ferreira, P. A. T., Rodrigues, A. L. M., Rodrigues, S. P., Silva, J. N., & Rodrigues, L. L. (2014). Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Science and Technology, 34(1), 135–142.CrossRefGoogle Scholar
  45. Sucharovà, J., Suchara, I., Hola, M., Marikova, S., Reimann, C., Boyd, R., Filzmoser, P., & Englmaier, P. (2012). Top−/bottom-soil ratios and enrichment factors: what do they really show? Applied Geochemistry, 27, 138–145.CrossRefGoogle Scholar
  46. Summons, R. E. (1993). Biogeochemical Cycles. In Biogeochemical cycles: a review of fundamental aspects of organic matter formation, preservation and composition. In: Organic Geochemistry – Principles and applications. Engel, M.H. and Macko, S.A., eds. ISBM 0-306-44378-3. New York: Plenum Press.CrossRefGoogle Scholar
  47. Szabo, J. (2016). Volcanic wines: salt, grit and power. (Jacqui Small Publisher). ISBN-10: 1910254002.Google Scholar
  48. Tian, H. E., Sheng Gao, Y., Ming Li, F., & Zeng, F. (2003). Effects of europium ions (Eu3+) on the distribution and related biological activities of elements in Lathyrus sativus L. roots. Biological Trace Element Research, 93, 257–269.CrossRefGoogle Scholar
  49. Torres, P. C., Madeira, J., Silva, L. C., Brum da Silveira, A., Serralheiro, A., & Mota Gomes, A. (1998). Carta Geológica das Erupções Históricas da Ilha do Fogo (Cabo Verde): revisão e actualização. Comunicações do Instituto Geológico e Mineiro, 84, 193–196.Google Scholar
  50. Tschan, M., Robison, B. H., & Schulin, R. (2009). Antimony in the soil-plant system—a review. Environmental Chemistry, 6(2), 106–115.CrossRefGoogle Scholar
  51. Tudisca, S., Sgroi, F., & Testa, R. (2011). Competitiveness and sustainability of extreme viticulture in Pantelleria Island. New Medit, 10(4), 57–64.Google Scholar
  52. Yang, Y., Duan, C., Du, H., Tian, J., & Pan, Q. (2010). Trace element and rare earth element profile in berry tissues of three grape cultivars. American Journal of Enology and Viticulture, 61(3), 401–407.Google Scholar
  53. Zayed, A., Mel Lytle, C., Hong Qian, J., & Terry, N. (1998). Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta, 206(2), 293–299.CrossRefGoogle Scholar
  54. Zeng, F., Tian, H. E., Wang, Z., An, Y., Gao, F., Zhang, L., Li, F., & Shan, L. (2003). Effect of rare earth element europium on amaranthin synthesis in a Amarathus caudatus seedlings. Biological Trace Element Research, 93, 271–282.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior TécnicoUniversidade de LisboaBobadelaPortugal
  2. 2.Unidade de Investigacão de Química Ambiental, Instituto Superior de AgronomiaUniversidade Técnica de Lisboa (TULisbon)LisbonPortugal
  3. 3.GeoBioTecUniversidade de AveiroAveiroPortugal
  4. 4.Dep. de GeociênciasUniversidade de AveiroAveiroPortugal

Personalised recommendations