Long-term trends in ambient fine particulate matter from 1980 to 2016 in United Arab Emirates

  • Ahmed A. Al-TaaniEmail author
  • Yousef Nazzal
  • Fares M. Howari
  • Ahmad Yousef


This paper presents the most comprehensive datasets of ambient fine particulate matter (PM2.5) for the UAE from 1980 to 2016. The long-term distributions of PM2.5 showed the annual average PM2.5 concentrations constantly exceeded the EPA and WHO guidelines. They varied from 77 to 49 μg/m3 with an overall average of 61.25 μg/m3. While the inter-annual variability in PM2.5 concentrations showed relatively a cyclic pattern, with successive ups and downs, it broadly exhibited an increasing trend, particularly, over the last 14 years. PM2.5 concentrations displayed a strong seasonal pattern, with greatest values observed during warm summer season, a period of high demand of electricity and dust events. The lowest values found in autumn are attributable to reduced demand of energy. Decreased atmospheric temperatures and high relative humidity coinciding with this period are likely to reduce the secondary formation of PM2.5. The spatial changes in PM2.5 concentrations exhibited gradual downward trends to the north and northeast directions. Airborne PM2.5 is prevalent in the southern and western regions, where the majority of oil and gas fields are located. PM2.5/PM10 ratio indicated that ambient aerosols are principally associated with anthropogenic sources. Peaks in PM2.5/CO ratio were frequently observed during June, July, and August, although few were concurrent with March. This indicates that secondary formation plays an important role in PM2.5 levels measured in these months, especially as the photochemical activities become relatively strong in these periods. The lowest PM2.5/CO ratios were found during September, October, and November (autumn) suggesting a considerable contribution of primary combustion emissions, especially vehicular emissions, to PM2.5 concentration. PM2.5 concentrations are positively correlated with sulfate levels. In addition to sea and dust aerosols, sulfate concentration in the coastal region is also related to fossil fuel burning from power plants, oil and gas fields, and oil industries. The population-weighted average of PM2.5 in UAE was 63.9 μg/m3, which is more than three times greater than the global population-weighted mean of 20 μg/m3.


PM2.5 Aerosol Emissions UAE 


Funding information

This project was funded by the Research Office, Zayed University in United Arab Emirates (Project No. R 17081).


  1. Agay-Shay, K., Friger, M., Linn, S., Peled, A., Amitai, Y., & Peretz, C. (2013). Air pollution and congenital heart defects. Environmental Research, 124, 28–34. Scholar
  2. Al Jaberi, J., Thomsen, J., Al Hashimi, M., Al Bagham, S. H., Al Yousuf, M. H. S., & Jamil, K. M., et al. (2010). The national strategy and action plan for environmental health for the UAE, Abu Dhabi.Google Scholar
  3. Al-Taani, A. A., Batayneh, A., Mogren, S., Nazzal, N., Ghrefat, H., Zaman, H., et al. (2013). Groundwater quality of coastal aquifer Systems in the Eastern Coast of the Gulf of Aqaba, Saudi Arabia. Journal of Applied Science and Agriculture, 8(6), 768–778.Google Scholar
  4. Al-Taani, A. A., Rashdan, M., & Khashashneh, S. (2015). Atmospheric dry deposition of mineral dust to the Gulf of Aqaba, Red Sea: Rate and trace elements. Marine Pollution Bulletin, 92(1–2), 252–258.CrossRefGoogle Scholar
  5. Al-Taani, A. A., Howari, F. M., Nazzal, N., & Yousef, A. (2018). Seasonal impact to air qualities in industrial areas of the Arabian gulf region. Environmental Engineering Research, 23(2), 143–149.CrossRefGoogle Scholar
  6. Analitis, A., Katsouyanni, K., Dimakopoulou, K., Samoli, E., Nikoloulopoulos, A. K., Petasakis, Y., Touloumi, G., Schwartz, J., Anderson, H. R., Cambra, K., Forastiere, F., Zmirou, D., Vonk, J. M., Clancy, L., Kriz, B., Bobvos, J., & Pekkanen, J. (2006). Short-term effects of ambient particles on cardiovascular and respiratory mortality. Epidemiology, 17(2), 230–233.CrossRefGoogle Scholar
  7. Basha, G., Phanikumar, D. V., Kumar, K. N., Ouarda, T. B. M. J., & Marpua, P. R. (2015). Investigation of aerosol optical, physical, and radiative characteristics of a severe dust storm observed over UAE. Remote Sensing of Environment, 169, 404–417.CrossRefGoogle Scholar
  8. Batayneh, A., Elawadi, E., Zaman, H., Al-Taani, A. A., Nazzal, Y., & Ghrefat, H. (2014). Environmental assessment of the Gulf of Aqaba coastal surface waters, Saudi Arabia. Journal of Coastal Research, 30(2), 283–290.CrossRefGoogle Scholar
  9. Batayneh, A., Ghrefat, H., Zumlot, T., Elawadi, E., Mogren, S., Zaman, Z., et al. (2015). Assessing of metals and metalloids in surface sediments along the Gulf of Aqaba coast, northwestern Saudi Arabia. Journal of Coastal Research, 31(1), 163–176.CrossRefGoogle Scholar
  10. Blanco-Becerra, L. C., Gáfaro-Rojas, A. I., & Rojas-Roa, N. Y. (2015). Influence of precipitation scavenging on the PM2.5/PM10 ratio at the kennedy locality of Bogotá, Colombia. Revista Facultad de Ingeniería Universidad de Antioquia, 76, 58–65.Google Scholar
  11. Bosilovich, M. G., Akella, S., Coy, L., Cullather, R., Draper, C., & Gelaro, R., et al. (2015). MERRA-2: Initial evaluation of the climate. National Aeronautics and Space Administration, Goddard Space Flight Center, Vol. 43, NASA Global Modeling and Assimilation Office, pp. 139.Google Scholar
  12. Bosilovich, M. G., Lucchesi, R., & Suarez, M., (2016). MERRA-2: File specification. NASA GMAO Office Note 9, 75 pp.Google Scholar
  13. Brewer, E., Li, Y., Finken, B., Quartucy, G., Muzio, L., Baez, A., Garibay, M., & Jung, H. S. (2016). PM2.5 and ultrafine particulate matter emissions from natural gas-fired turbine for power generation. Atmospheric Environment, 131, 141–149.CrossRefGoogle Scholar
  14. Burnett, R. T., Pope, C. A., III, Ezzati, M., Olives, C., Lim, S. S., Mehta, S., Shin, H. H., Singh, G., Hubbell, B., Brauer, M., Anderson, H. R., Smith, K. R., Balmes, J. R., Bruce, N. G., Kan, H., Laden, F., Prüss-Ustün, A., Turner, M. C., Gapstur, S. M., Diver, W. R., & Cohen, A. (2014). An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environmental Health Perspectives, 122(4), 397–403.CrossRefGoogle Scholar
  15. Cao, J. J., Lee, S. C., Zhang, X. Y., Chow, J. C., An, Z. S., Ho, K. F., et al. (2005). Characterization of Airbone carbonate over a site near Asian dust source regions during spring 2002 and its climatic and environmental significance. Journal of Geophysical Research, 110, D03203. Scholar
  16. Chin, M., Diehl, T., Tan, Q., Prospero, J. M., Kahn, R. A., Remer, L. A., Yu, H., Sayer, A. M., Bian, H., Geogdzhayev, I. V., Holben, B. N., Howell, S. G., Huebert, B. J., Hsu, N. C., Kim, D., Kucsera, T. L., Levy, R. C., Mishchenko, M. I., Pan, X., Quinn, P. K., Schuster, G. L., Streets, D. G., Strode, S. A., Torres, O., & Zhao, X. P. (2014). Multi-decadal variations of atmospheric aerosol from 1980-2009: Sources and regional trends. Atmospheric Chemistry and Physics, 14, 3657–3690.CrossRefGoogle Scholar
  17. Chung, Y. S., Kim, H. S., Dulama, J., & Harris, J. (2003). On heavy dustfall observed with explosive sandstorms in Chongwon-Chongju, Korea in 2002. Atmospheric Environment, 37, 3425–3433.CrossRefGoogle Scholar
  18. Dubey, K., & Krarti, M. (2017). Economic and environmental benefits of improving UAE building stock energy efficiency Kankana Dubey and Moncef Krarti. The king Abdullah Petroleum studies and research center, KS-2017--DP13.Google Scholar
  19. EAD (Environment Agency of Abu Dhabi) (2008). Waste and pollution sources of Abu Dhabi Emirate, State of Environment, Abu Dhabi, UAE, pp. 71–91.Google Scholar
  20. Engelbrecht, J. P., McDonald, E. V., Gillies, J. A., Jayanty, R. K. M., Casuccio, G., & Gertler, A. W. (2009). Characterizing mineral dusts and other aerosols from the Middle East-part 1: Ambient sampling. Inhalation Toxicology, 21(4), 297–326.CrossRefGoogle Scholar
  21. EPA (U.S. Environmental Protection Agency). (2015). National Ambient Air Quality Standards (NAAQS).
  22. EPA (United States Environmental Protection Agency) (2003). Guidelines for developing an air quality (ozone and PM2.5) forecasting program, EPA-456/R-03-002, pp. 1–2.Google Scholar
  23. Farahat, A. (2016). Air pollution in the Arabian Peninsula (Saudi Arabia, the United Arab Emirates, Kuwait, Qatar, Bahrain, and Oman): Causes, effects, and aerosol categorization. Arabian Journal of Geosciences, 9, 196. Scholar
  24. Farahat, A., El-Askary, H., & Al-Shaibani, A. (2015). Study of aerosols characteristics and dynamics over the Kingdom of Saudi Arabia using a multi sensor approach combined with ground observations. Advances In Meteorology, Article ID 247531, 12.
  25. Furman, H. K. H. (2003). Dust storms in the Middle East: Sources of origin and their temporal characteristics. Indoor and Built Environment, 12(6), 419–426.CrossRefGoogle Scholar
  26. Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate.
  27. GMAO (Global Modeling and Assimilation Office). (2015). MERRA-2 tavgM_2d_aer_Nx: 2d, monthly mean, time-averaged, single-level, assimilation, aerosol diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [October 2017].
  28. Goldberg, M. S., Burnett, R. T., Bailar, J. C. I. I. I., Brook, J., Bonvalot, Y., Tamblyn, R., et al. (2001). The association between daily mortality and ambient air particle pollution in Montreal, Quebec. 2. Cause-specific mortality. Environmental Research, 86(1), 26–36.CrossRefGoogle Scholar
  29. Grantz, D. A., Garner, J. H. B., & Johnson, D. W. (2003). Ecological effects of particulate matter. Environment International, 29, 213–239. Scholar
  30. Hamdan, N. M., Alawadhi, H., & Jisrawi, N. (2015). Elemental and chemical analysis of PM10 and PM2.5 indoor and outdoor pollutants in the UAE. International Journal of Environmental Science and Development, 6(8), 566–570.CrossRefGoogle Scholar
  31. Hamdan, N. M., Alawadhi, H., & Jisrawi, N. (2016). Particulate matter pollution in the United Arab Emirates: Elemental analysis and phase identification of fine particulate pollutants. Proceedings of the 2nd World Congress on New Technologies (NewTech'16) Budapest, Hungary – August 18–19, 2016 Paper No. ICEPR 158. ICEPR 158-1.
  32. Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B., Brunekreef, B., & Kaufman, J. D. (2013). Long-term air pollution exposure and cardio-respiratory mortality: A review. Environmental Health, 12(1), 43.CrossRefGoogle Scholar
  33. Keuken, M., Zandveld, P., van den Elshout, S., Janssen, N. H. H., & Hoek, G. (2011). Air quality and health impact of PM10 and EC in the city of Rotterdam, the Netherlands in 1985–2008. Atmospheric Environment, 45, 5294–5301. Scholar
  34. Li, Y., Gibson, J. M., Jat, P., Puggioni, G., Hasan, M., West, J. J., Vizuete, W., Sexton, K., & Serre, M. (2010). Burden of disease attributed to anthropogenic air pollution in the United Arab Emirates: Estimates based on observed air quality data. Science of the Total Environment, 408(23), 5784–5793. Scholar
  35. Li, P., Xin, J., Wang, Y., Wang, S., Shang, K., Liu, Z., Li, G., Pan, X., Wei, L., & Wang, M. (2013). Time-series analysis of mortality effects from airborne particulate matter size fractions in Beijing. Atmospheric Environment, 81, 253–262. Scholar
  36. Lin, M., Tao, J., Chan, C. Y., Cao, J. J., Zhang, Z. S., Zhu, L. H., et al. (2012). Regression analyses between recent air quality and visibility changes in megacities at four haze regions in China. Aerosol Air Qual Res, 12, 1049–1061.
  37. Liu, J., Li, J., & Li, W. (2016). Temporal patterns in fine particulate matter time series in Beijing: A calendar view. Scientific Reports, 6, 32221. Scholar
  38. McCarty, W., Coy, L., Gelaro, R., Huang, A., Merkova, D., Smith, E. B., et al. (2016). MERRA-2 input observations: Summary and assessment. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM-2016-104606, 46, NASA Global Modeling and Assimilation Office, pp. 64.Google Scholar
  39. Middleton, N. (1986). Dust storms in the Middle East. Journal of Arid Environments, 10, 83–96.CrossRefGoogle Scholar
  40. Ministry of Presidential Affairs. (2011). Dust sources affecting the United Arab Emirates National Center of Meteorology and Seismology. UAE: Ministry of Presidential Affairs.Google Scholar
  41. Molod, A., Takacs, L., Suarez, M., Bacmeister, J., Song, I.-S., & Eichmann, A. (2012). The GEOS-5 atmospheric general circulation model: Mean climate and development from MERRA to Fortuna. NASA Tech. Memo. NASA/TM-2012-104606, Vol. 28, 117 pp.Google Scholar
  42. Molod, A. M., Takacs, L. L., Suarez, M. J., & Bacmeister, J. (2015). Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geoscientific Model Development, 8, 1339–1356.CrossRefGoogle Scholar
  43. National Center of Meteorology. (2017). Climate yearly report. Ministry of Presidential Affairs. Abu Dhabi, United Arab Emirates.Google Scholar
  44. Nilsson, B. A. (1994). Model of the relation between aerosol extinction and meteorological parameters. Atmospheric Environment, 28(5), 815–825.CrossRefGoogle Scholar
  45. Ostro, B., Broadwin, R., Green, S., Feng, W. Y., & Lipsett, M. (2006). Fine particulate air pollution and mortality in nine California counties: Results from CALFINE. Environmental Health Perspectives, 114(1), 29–33.CrossRefGoogle Scholar
  46. Pascal, M., Falq, G., Wagner, V., Chatignoux, E., Corso, M., Blanchard, M., Host, S., Pascal, L., & Larrieu, S. (2014). Short-term impacts of particulate matter (PM10, PM10–2.5, PM2.5) on mortality in nine French cities. Atmospheric Environment, 95, 175–184. Scholar
  47. Pope, C. A., III, Thun, M. J., & Namboodiri, M. M. (1995). Particulate air-pollution as a predictor of mortality in a prospective-study of us adults. American Journal of Respiratory and Critical Care Medicine, 151, 669–674.CrossRefGoogle Scholar
  48. Racherla, P. N., & Adams, P. J. (2006). Sensitivity of global tropospheric ozone and fine particulate matter concentrations to climate change. Journal of Geophysical Research, 111, D24103. Scholar
  49. Randles, C. A., da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A., Govindaraju, R., et al. (2017). The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System Description and Data Assimilation Evaluation. Journal of Climate, 30, 6823–6850.CrossRefGoogle Scholar
  50. Reid, J. S., Gatebe, C., & Holben, B. N. (2004). Science Plan, United Arab Emirates unified aerosol experiment (UAE), DWRS, NASA, NRL, ONR.Google Scholar
  51. Rienecker, M. M., Suarez, M. J., Todling, R., Bacmeister, J., Takacs, L., Liu, H.-C., et al. (2008). The GEOS-5 Data Assimilation System – Documentation of Versions 5.0.1 and 5.1.0. NASA GSFC Technical Report Series on Global Modeling and Data Assimilation, NASA/TM-2007-104606, Vol. 27., pp. 92.Google Scholar
  52. Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G. K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., & Woollen, J. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of Climate, 24, 3624–3648.CrossRefGoogle Scholar
  53. Samet, J. M., Dominici, F., Curriero, F. C., Coursac, I., & Zeger, S. L. (2000). Fine particulate air pollution and mortality in 20 US cities, 1987–1994. The New England Journal of Medicine, 343, 1742–1749.CrossRefGoogle Scholar
  54. Shen, Z. X., Cao, J. J., & Arimoto, R. (2007). Chemical composition and source characterization of spring aerosol over Horqin sand land in northeastern China. Journal of Geophysical Research, 112, D14315. Scholar
  55. Shen, Z., Wang, X., Zhang, R., Ho, K., Cao, J., & Zhang, M. (2011). Chemical composition of water soluble ions and carbonate estimation in spring aerosol at a semi-arid site of Tongyu, China. Aerosol and Air Quality Research, 10, 360–368.CrossRefGoogle Scholar
  56. Silbajoris, R., Osornio-Vargas, A. R., Simmons, S. O., Reed, W., Bromberg, P. A., Dailey, L. A., & Samet, J. M. (2011). Ambient particulate matter induces interleukin-8 expression through an alternative NF-jB (nuclear factor-kappa B) mechanism in human airway epithelial cells. Environmental Health Perspectives, 119, 1379–1383. Scholar
  57. Speranza, A., Caggiano, R., Margiotta, S., & Trippetta, S. (2014). A novel approach to comparing simultaneous size-segregated particulate matter (PM) concentration ratios by means of a dedicated triangular diagram using the agri valley pm measurements as an example. Natural Hazards and Earth System Sciences, 14, 2727–2733.CrossRefGoogle Scholar
  58. Sugimoto, N., Shimizu, A., Matsui, I. & Nishikawa, M. (2016). A method for estimating the fraction of mineral dust in particulate matter using PM2.5-to- PM10 ratios. Particuology, 28, 114–120.Google Scholar
  59. UAE Science Plan. (2004). Unified aerosol experiment (UAE), prepared for DWRS, NASA, NRL, and ONR, version 1.0, September 15, 2004. Compiled and edited by Jeffrey S. Reid, Brent N. Holben, Charles Gatebe, Stuart Piketh, and Douglas L. Westphal.Google Scholar
  60. van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., & Villeneuve, P. J. (2010). Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environmental Health Perspectives, 118, 847–855.CrossRefGoogle Scholar
  61. Vinkovic, V. (2006). Temperature inversion on the surface of externally heated optically thick multigrain dust clouds. The Astrophysical Journal, 651, 906–913.CrossRefGoogle Scholar
  62. Von Schneidemesser, E., Monks, P. S., Allan, J. D., Bruhwiler, L., Forster, P., Fowler, D., et al. (2015). Chemistry and the linkages between air quality and climate change. Chemical Reviews, 115, 3856–3897. Scholar
  63. WHO. (2005). Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: Global update 2005, Summary of Risk Assessment, WHO.Google Scholar
  64. Wu, W. S., Purser, R. J., & Parrish, D. F. (2002). Three-dimensional variational analysis with spatially inhomogeneous covariances. Monthly Weather Review, 130(12), 2905–2916.CrossRefGoogle Scholar
  65. Xu, G., Jiao, L., Zhao, S., Yuan, M., Li, X., Han, Y., et al. (2016). Examining the impacts of land use on air quality from a spatio-temporal perspective in Wuhan, China. Atmosphere, 7, 62.CrossRefGoogle Scholar
  66. Xu, G., Jiao, L., Zhang, B., Zhao, S., Yuan, M., Gu, Y., Liu, J., & Tang, X. (2017). Spatial and temporal variability of the PM2. 5/PM10 ratio in Wuhan, Central China. Aerosol and Air Quality Research, 17, 741–751.CrossRefGoogle Scholar
  67. Zanobetti, A., & Schwartz, J. (2009). The effect of fine and coarse particulate air pollution on mortality: A national analysis. Environmental Health Perspectives, 117(6), 898.CrossRefGoogle Scholar
  68. Zhang, Y. L., & Cao, F. (2015). Fine particulate matter (PM2.5) in China at a city level. Scientific Reports, 5, 14884.
  69. Zhang, L. W., Chen, X., Xue, X. D., Sun, M., Han, B., Li, C. P., Ma, J., Yu, H., Sun, Z. R., Zhao, L. J., Zhao, B. X., Liu, Y. M., Chen, J., Wang, P. P., Bai, Z. P., & Tang, N. J. (2014). Long-term exposure to high particulate matter pollution and cardiovascular mortality: A 12-year cohort study in four cities in northern China. Environment International, 62, 41–47. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Earth and Environmental Sciences, Faculty of ScienceYarmouk UniversityIrbidJordan
  2. 2.Deanship of Scientific Research and Graduate StudiesYarmouk UniversityIrbidJordan
  3. 3.College of Natural and Health SciencesZayed UniversityAbu DhabiUnited Arab Emirates
  4. 4.DubaiUnited Arab Emirates

Personalised recommendations