Advertisement

Spatial and temporal distribution of metals in PM2.5 during 2013: assessment of wind patterns to the impacts of geogenic and anthropogenic sources

  • Rodrigo Garza-Galindo
  • Ofelia Morton-BermeaEmail author
  • Elizabeth Hernández-Álvarez
  • Sara L. Ordoñez-Godínez
  • Omar Amador-Muñoz
  • Laura E. Beramendi-Orosco
  • Armando Retama
  • Javier Miranda
  • Irma Rosas-Pérez
Article
  • 120 Downloads

Abstract

The Mexico City Metropolitan Area (MCMA) was the object of a chemical elemental characterization (Ti, V, Cr, Mn, Co, Ni, Cu, Mo, Ag, Cd, Sb, Pb, La, Sm, Ce, and Eu) of PM2.5 collected during 2013 and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Sampling campaigns were carried out at five locations simultaneously—northwest, northeast, center, southwest, and southeast—during dry-warm season (April), rainy season (August), and dry-cold season (November). By means of enrichment factor (EF) and principal component analysis (PCA), it was possible to attribute the analyzed elements to geogenic and anthropogenic sources, as well as to identify a group of elements with mixed provenance sources. The highest concentrations for most metals were found in northwest and northeast, and during dry-warm (DW), confirming the trend observed in PM2.5 samples collected in 2011. Despite similarities between 2011 and 2013, an increase of 17% in PM2.5 mass concentration was observed, mainly attributable to geogenic sources, whereby the importance of wind intensity to the impact of emission sources is highlighted. The effect of wind intensity was revealed, by means of polar plots, as the controlling mechanism for this increase. This allowed us to conclude that high-speed episodes (5 m s−1) were responsible for raising geogenic metal concentrations rather than wind direction.

Keywords

PM2.5 Metals Mexico City Wind plots Geogenic and anthropogenic sources 

Notes

Funding information

This study was performed with the financial support of Project IN103717 from DGAPA (Dirección General de Personal Académico, UNAM). Rodrigo Garza-Galindo gratefully acknowledges a grant from CONACyT (Consejo Nacional de Ciencia y Tecnología).

Supplementary material

10661_2019_7251_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 19 kb)
10661_2019_7251_MOESM2_ESM.docx (436 kb)
ESM 2 (DOCX 436 kb)

References

  1. Aldabe, J., Elustondo, D., Santamaría, C., Lasheras, E., Pandolfi, M., Alastuey, A., Querol, X., & Santamaría, J. M. (2011). Chemical characterisation and source apportionment of PM2. 5 and PM10 at rural, urban and traffic sites in Navarra (north of Spain). Atmospheric Research, 102(1), 191–205.CrossRefGoogle Scholar
  2. Alleman, L. Y., Lamaison, L., Perdrix, E., Robache, A., & Galloo, J. C. (2010). PM 10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmospheric Research, 96(4), 612–625.CrossRefGoogle Scholar
  3. Amador-Muñoz, O., Villalobos-Pietrini, R., Miranda, J., & Vera-Avila, L. E. (2011). Organic compounds of PM 2.5 in Mexico Valley: spatial and temporal patterns, behavior and sources. Science of the Total Environment, 409(8), 1453–1465.CrossRefGoogle Scholar
  4. Amador-Muñoz, O., Bazán-Torija, S., Villa-Ferreira, S. A., Villalobos-Pietrini, R., Bravo-Cabrera, J. L., Munive-Colín, Z., Hernández-Mena, L., Saldarriaga-Noreña, H., & Murillo-Tovar, M. A. (2013). Opposing seasonal trends for polycyclic aromatic hydrocarbons and PM10, health risk and sources in Southwest Mexico City. Atmospheric Research., 122, 199–212.CrossRefGoogle Scholar
  5. Barrera, V. A., Miranda, J., Espinosa, A. A., Meinguer, J., Martínez, J. N., Cerón, E., et al. (2012). Contribution of soil, sulfate, and biomass burning sources to the elemental composition of PM10 from Mexico city. International Journal of Environmental Research, 6(3), 597–612.Google Scholar
  6. Cheng, Y., Lee, S. C., Ho, K. F., Chow, J. C., Watson, J. G., Louie, P. K. K., Cao, J. J., & Hai, X. (2010). Chemically-speciated on-road PM2. 5 motor vehicle emission factors in Hong Kong. Science of the Total Environment, 408(7), 1621–1627.CrossRefGoogle Scholar
  7. DeCarlo, P. F., Dunlea, E. J., Kimmel, J. R., Aiken, A. C., Sueper, D., Crounse, J., Wennberg, P. O., Emmons, L., Shinozuka, Y., Clarke, A., Zhou, J., Tomlinson, J., Collins, D. R., Knapp, D., Weinheimer, A. J., Montzka, D. D., Campos, T., & Jimenez, J. L. (2008). Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign. Atmospheric Chemistry and Physics, 8(14), 4027–4048.CrossRefGoogle Scholar
  8. De Foy, B., Caetano, E., Magana, V., Zitácuaro, A., Cárdenas, B., Retama, A., et al. (2005). Mexico City basin wind circulation during the MCMA-2003 field campaign. Atmospheric Chemistry and Physics Discussions, 5(3), 2503–2558.CrossRefGoogle Scholar
  9. Dongarrà, G., Manno, E., Varrica, D., Lombardo, M., & Vultaggio, M. (2010). Study on ambient concentrations of PM 10, PM 10–2.5, PM 2.5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates. Atmospheric Environment, 44(39), 5244–5257.CrossRefGoogle Scholar
  10. Hays, M. D., Cho, S. H., Baldauf, R., Schauer, J. J., & Shafer, M. (2011). Particle size distributions of metal and non-metal elements in an urban near-highway environment. Atmospheric Environment, 45(4), 925–934.CrossRefGoogle Scholar
  11. Hernández-López, A. E., Miranda, J., & Pineda, J. C. (2016). X-ray fluorescence analysis of fine atmospheric aerosols from a site in Mexico City. Journal of Nuclear. Physics, Material Sciences, Radiation and Applications., 4(1), 25–30.CrossRefGoogle Scholar
  12. Johnson, K. S., Foy, B. D., Zuberi, B., Molina, L. T., Molina, M. J., Xie, Y., et al. (2006). Aerosol composition and source apportionment in the Mexico City Metropolitan Area with PIXE/PESA/STIM and multivariate analysis. Atmospheric Chemistry and Physics, 6(12), 4591–4600.CrossRefGoogle Scholar
  13. Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151(2), 362–367.CrossRefGoogle Scholar
  14. Kulshrestha, A., Satsangi, P. G., Masih, J., & Taneja, A. (2009). Metal concentration of PM2. 5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Science of the Total Environment, 407(24), 6196–6204.CrossRefGoogle Scholar
  15. Ledoux, F., Kfoury, A., Delmaire, G., Roussel, G., El Zein, A., & Courcot, D. (2017). Contributions of local and regional anthropogenic sources of metals in PM2.5 at an urban site in northern France. Chemosphere, 181, 713–724.CrossRefGoogle Scholar
  16. Michael, S., Montag, M., & Dott, W. (2013). Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter. Environmental Pollution, 183, 19–29.CrossRefGoogle Scholar
  17. Miranda, J., Barrera, V. A., Espinosa, A. A., Galindo, O. S., & Meinguer, J. (2005). PIXE analysis of atmospheric aerosols in Mexico City. X-Ray Spectrometry, 34(4), 315–319.CrossRefGoogle Scholar
  18. Molina, L. T., Madronich, S., Gaffney, J. S., Apel, E., de Foy, B., Fast, J., Ferrare, R., Herndon, S., Jimenez, J. L., Lamb, B., Osornio-Vargas, A. R., Russell, P., Schauer, J. J., Stevens, P. S., Volkamer, R., & Zavala, M. (2010). An overview of the MILAGRO 2006 campaign: Mexico City emissions and their transport and transformation. Atmospheric Chemistry and Physics, 10, 8697–8760.CrossRefGoogle Scholar
  19. Moreno, T., Querol, X., Alastuey, A., Reche, C., Cusack, M., Amato, F., Pandolfi, M., Pey, J., Richard, A., Prévôt, A. S. H., Furger, M., & Gibbons, W. (2011). Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings. Atmospheric Chemistry and Physics, 11(17), 9415–9430.CrossRefGoogle Scholar
  20. Morton-Bermea, O., Hernández-Álvarez, E., González-Hernández, G., Romero, F., Lozano, R., & Beramendi-Orosco, L. E. (2009). Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City. Journal of Geochemical Exploration, 101(3), 218–224.CrossRefGoogle Scholar
  21. Morton-Bermea, O., Amador-Muñoz, O., Martínez-Trejo, L., Hernández-Alvarez, E., Beramendi-Orosco, L., & García-Arreola, M. E. (2014). Platinum in PM2.5 of the metropolitan area of Mexico City. Environmental Geochemical Health, 36, 987–994.CrossRefGoogle Scholar
  22. Morton-Bermea, O., Garza-Galindo, R., Hernández-Álvarez, E., Amador-Muñoz, O., Garcia-Arreola, M. E., Ordoñez-Godínez, S. L., Beramendi-Orosco, L., Santos-Medina, G. L., Miranda, J., & Rosas-Pérez, I. (2018). Recognition of the importance of geogenic sources in the content of metals in PM 2.5 collected in the Mexico City Metropolitan Area. Environmental Monitoring and Assessment, 190(2), 83.CrossRefGoogle Scholar
  23. Mugica, V., Ortiz, E., Molina, L., De Vizcaya-Ruiz, A., Nebot, A., Quintana, R., et al. (2009). PM composition and source reconciliation in Mexico City. Atmospheric Environment, 43(32), 5068–5074.CrossRefGoogle Scholar
  24. Pandolfi, M., Gonzalez-Castanedo, Y., Alastuey, A., Jesus, D., Mantilla, E., de la Campa, A. S., et al. (2011). Source apportionment of PM 10 and PM 2.5 at multiple sites in the strait of Gibraltar by PMF: impact of shipping emissions. Environmental Science and Pollution Research, 18(2), 260–269.CrossRefGoogle Scholar
  25. Perrone, M. G., Gualtieri, M., Consonni, V., Ferrero, L., Sangiorgi, G., Longhin, E., Ballabio, D., Bolzacchini, E., & Camatini, M. (2013). Particle size, chemical composition, seasons of the year and urban, rural or remote site origins as determinants of biological effects of particulate matter on pulmonary cells. Environmental Pollution, 176, 215–227.CrossRefGoogle Scholar
  26. Querol, X., Pey, J., Minguillón, M. C., Pérez, N., Alastuey, A., Viana, M., Moreno, T., Bernabé, R. M., Blanco, S., Cárdenas, B., Vega, E., Sosa, G., Escalona, S., Ruiz, H., & Artíñano, B. (2008). PM speciation and sources in Mexico during the MILAGRO-2006 campaign. Atmospheric Chemistry and Physics, 8(1), 111–128.CrossRefGoogle Scholar
  27. Saliba, N. A., El Jam, F., El Tayar, G., Obeid, W., & Roumie, M. (2010). Origin and variability of particulate matter (PM10 and PM2. 5) mass concentrations over an Eastern Mediterranean city. Atmospheric Research, 97(1–2), 106–114.CrossRefGoogle Scholar
  28. Santibáñez-Andrade, M., Quezada-Maldonado, E. M., Osornio-Vargas, Á., Sánchez-Pérez, Y., & García-Cuellar, C. M. (2017). Air pollution and genomic instability: the role of particulate matter in lung carcinogenesis. Environmental Pollution, 229, 412–422.CrossRefGoogle Scholar
  29. Stone, E. A., Snyder, D. C., Sheesley, R. J., Sullivan, A. P., Weber, R. J., & Schauer, J. J. (2008). Source apportionment of fine organic aerosol in Mexico City during the MILAGRO experiment 2006. Atmospheric Chemistry and Physics, 8(5), 1249–1259.CrossRefGoogle Scholar
  30. Uria-Tellaetxe, I., & Carslaw, D. C. (2014). Conditional bivariate probability function for source identification. Environmental Modelling & Software, 59, 1–9.CrossRefGoogle Scholar
  31. Wang, Q., Kobayashi, K., Lu, S., Nakajima, D., Wang, W., Zhang, W., Sekiguchi, K., & Terasaki, M. (2016). Studies on size distribution and health risk of 37 species of polycyclic aromatic hydrocarbons associated with fine particulate matter collected in the atmosphere of a suburban area of Shanghai city, China. Environmental Pollution, 214, 149–160.CrossRefGoogle Scholar
  32. Warneck, P., & Williams, J. (2012). The atmospheric Chemist’s companion: numerical data for use in the atmospheric sciences. Springer Science & Business Media.Google Scholar
  33. Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7), 1217–1232.CrossRefGoogle Scholar
  34. World Health Organization. (2016). Ambient air pollution: A global assessment of exposure and burden of disease Google Scholar
  35. Yuan, Z., Lau, A. K. H., Zhang, H., Yu, J. Z., Louie, P. K., & Fung, J. C. (2006). Identification and spatiotemporal variations of dominant PM 10 sources over Hong Kong. Atmospheric Environment, 40(10), 1803–1815.CrossRefGoogle Scholar
  36. Zhang, C., Ni, Z., & Ni, L. (2015). Multifractal detrended cross-correlation analysis between PM2. 5 and meteorological factors. Physica A: Statistical Mechanics and its Applications, 438, 114–123.CrossRefGoogle Scholar
  37. Zhai, Y., Liu, X., Chen, H., Xu, B., Zhu, L., Li, C., & Zeng, G. (2014). Source identification and potential ecological risk assessment of heavy metals in PM2. 5 from Changsha. Science of the Total Environment, 493, 109–115.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rodrigo Garza-Galindo
    • 1
  • Ofelia Morton-Bermea
    • 2
    Email author
  • Elizabeth Hernández-Álvarez
    • 2
  • Sara L. Ordoñez-Godínez
    • 2
  • Omar Amador-Muñoz
    • 3
  • Laura E. Beramendi-Orosco
    • 4
  • Armando Retama
    • 5
  • Javier Miranda
    • 6
  • Irma Rosas-Pérez
    • 3
  1. 1.Posgrado en Ciencias de la TierraUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.Centro de Ciencias de la AtmósferaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  4. 4.Instituto de Geología and Labotarorio Nacional de Geoquímica y MineralogíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  5. 5.Secretaría del Medio Ambiente del Gobierno de la Cd. de MéxicoMexico CityMexico
  6. 6.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations