Root structural changes of two remediator plants as the first defective barrier against industrial pollution, and their hyperaccumulation ability

  • Narjes S. Mohammadi Jahromi
  • Parissa JonoubiEmail author
  • Ahmad Majd
  • Mansooreh Dehghani


In the present day, plants are increasingly being utilized to safeguard the environment. In this study, we used Salsola crassa M. B. and Suaeda maritima L. Dumort for phytoremediation of water contaminated with heavy metals and simultaneous examination of the effect of industrial pollution on their root structures. After irrigation of a treatment group with wastewater and a control group with fresh water for 3 months, we fixed the root parts in the FAA fixator for developmental study, and measured the concentrations of Co, Ni, Zn, As, Cu, and Pb in the roots, shoots, soil, and irrigating water. The plants irrigated with wastewater showed significant accumulation of heavy metals in the roots and some translocation of heavy metals from the roots to the shoots. We also performed an experiment with two 0.3 m3 pools to more closely study the feasibility of these plants for filtering water of contaminants, including mineral compounds, and altering its chemical characteristics. In our anatomical studies, the cells of the treatment roots showed irregularities and abnormal appearances in all tissue layers. The diameter and area of the xylem and the size of the cortical parenchyma have increased in the treatment plants of both species, confirmed by Stereolite software. Phytoremediation studies indicated that S. crassa accumulated As, Cu, Zn, Pb, Co, and Ni, and S. maritima accumulated As, Co, Zn, and Cu. S. crassa accumulated more heavy metals in its roots, whereas S. maritima accumulated more in its shoots. The biological oxygen demand and chemical oxygen demand were also significantly reduced in the wastewater passed through pools with S. crassa. Our results indicate that both genera are hyperaccumulators of heavy metals and therefore hold promise for industrial wastewater treatment, especially the absorption of As.


S. crassa S. maritima Root development Stereological studies Phytoremediation Heavy metals BOD COD 



The authors wish to thank Mr. H. Argasi at the Research Consultation Center (RCC) at Shiraz University of Medical Sciences for his invaluable assistance in editing this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Arora, S., Patel, P. N., Vanza, M. J., & Rao, G. G. (2014). Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from coastal Gujarat. African Journal of Microbiology Research, 8(17), 1779–1788.CrossRefGoogle Scholar
  2. Baker, A. J. M., Reeves, R. D., & Hajar, A. S. M. (1994). Heavy metal accumulation and tolerance in British population of the metallophyte Thalaspi caerulesens J. and C. Presl (Brassicaeae). The New Phytologist, 127, 61–68.CrossRefGoogle Scholar
  3. Barberon, M., & Geldner, N. (2014). Radial transport of nutrients: the plant root as a polarized epithelium. Plant Physiology, 166, 528–537.CrossRefGoogle Scholar
  4. Bareen, F.-e., & Tahira, S. A. (2011). Metal accumulation potential of wild plants in tannery effluent contaminated soil of Kasur, Pakistan: field trials for toxic metal cleanup using Suaeda fruticosa. Journal of Hazardous Materials, 186(1), 443–450.CrossRefGoogle Scholar
  5. Cao, X., & Ma, L. Q. (2004). Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood. Environmental Pollution, 132(3), 435–442.CrossRefGoogle Scholar
  6. Cao, X., Ma, L. Q., & Shiralipour, A. (2003). Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environmental Pollution, 126(2), 157–167.CrossRefGoogle Scholar
  7. Cristaldi, A., Oliveri, C. G., Jho, E. H., Zuccarello, P., Grasso, A., Copat, C., & Ferrante, M. (2017). Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology and Innovation, 8, 309–326.CrossRefGoogle Scholar
  8. D’Alessandro, D., Arletti, S., Azara, A., Buffoli, M., Capasso, L., Cappuccitti, A., Casuccio, A., Cecchini, A., Costa, G., De Martino, A. M., Dettori, M., Di Rosa, E., Fara, G. M., Ferrante, M., Giammanco, G., Lauria, A., Melis, G., Moscato, U., Oberti, I., Patrizio, C., Petronio, M. G., Rebecchi, A., Romano Spica, V., Settimo, G., Signorelli, C., & Capolongo, S. (2017). Strategies for disease prevention and health promotion in urban areas: the Erice 50 charter. Annali Di Igiene Medicina Preventiva E Di ComunitàISSN: 1120–9135, 29(6), 481–493. Scholar
  9. El-Ghamery, A. A., Sadek, A. M., & Abd Elbar, O. H. (2015). Root anatomy of some species of Amaranthus (Amaranthaceae) and formation of successive cambia. Annals of Agricultural Science, 60(1), 53–60.CrossRefGoogle Scholar
  10. Eslamzadeh, T. (2006). Salicornia europeae, a bioaccumulator in Maharloo salt lake region. International Journal of Soil Science, 1(1), 75–80.CrossRefGoogle Scholar
  11. Fahn, A., & Zimmermann, M. H. (1982). Development of successive cambia in Atriplex halimus (Chenopodiaceae). Botanical Gazette, 143, 353–357.CrossRefGoogle Scholar
  12. Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its by-products. Applied Ecology and Environmental Research, 3, 1–18.CrossRefGoogle Scholar
  13. Gomes, M. P., de Sá e Melo Marques, T. C. L. L., de Oliveira Gonçalves Nogueira, M., de Castro, E. M., & Soares, Â. M. (2011). Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens. Scientia Agricola (Piracicaba, Braz.), 68(5), 566–573.CrossRefGoogle Scholar
  14. Grigore, M. N., Toma, C. (2007). Histo-anatomical strategies of chenopodiaceae halophytes: adaptive, ecological and evolutionary implications. WSEAS Transcriptions on Biology and Biomedicine, 4(12), 204-218.Google Scholar
  15. Grigore, M. N., Ivanescu, L., & Toma, C. (2014). Halophytes: an integrative anatomical study. Springer International Publishing.
  16. Hossain, M. A., Piyatida, P., da Silva, J. A. T., & Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 2012, 1–37.CrossRefGoogle Scholar
  17. Ji, J. (2015). Research status on Suaeda heteroptera Kitag. Aquatic Science and Technology, 3(2), 23–32.CrossRefGoogle Scholar
  18. Kraehmer, H., & Baur, P. (2013). In: Weed anatomy (Vol. 8, p. 258). A John Wiley & Sons, Ltd. Publication.
  19. Krzesłowska, M. (2011). The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiologiae Plantarum, 33, 35–51.CrossRefGoogle Scholar
  20. Kurkova, E. B., Myasoedov, N. A., Kotov, L. M., Lunkov, R. V., Shamsutdinov, N. Z., & Balnokin, Y. V. (2002). Specific structure of root cells of the salt-accumulating halophyte Suaeda altissima L. Doklady Biological Sciences, 387(1), 573–576.CrossRefGoogle Scholar
  21. Lou, L. Q., Ye, Z. H., Lin, A. J., & Wong, M. H. (2010). Interaction of arsenic and phosphate on their uptake and accumulation in Chinese brake fern. International Journal of Phytoremediation, 12(5), 487–502.CrossRefGoogle Scholar
  22. Lutts, S., & Lefevre, I. (2015). How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Annals of Botany, 115, 509–528.CrossRefGoogle Scholar
  23. Maestri, E., & Marmiroli, N. (2011). Transgenic plants for phytoremediation. International Journal of Phytoremediation, 1, 264–279.CrossRefGoogle Scholar
  24. Manousaki, E., & Kalogerakis, N. (2011). Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Industrial and Engineering Chemistry Research, 50, 656–660.CrossRefGoogle Scholar
  25. Odjegba, V. J., & Fasidi, I. O. (2007). Phytoremediation of heavy metals by Eichhornia crassipes. The Environmentalist, 27(3), 349–355.CrossRefGoogle Scholar
  26. Ostroumov, S. A., & Shestakova, T. V. (2009). Decreasing the measurable concentrations of Cu, Zn, Cd, and Pb in the water of the experimental systems containing Ceratophyllum demersum: the phytoremediation potential. Doklady Biological Sciences, 428, 444–447.CrossRefGoogle Scholar
  27. Peer, W., Baxter, I., Richards, E., Freeman, J., & Murphy, A. (2005). Phytoremediation and hyperaccumulator plants. In M. J. Tamás & E. Martinoia (Eds.), Molecular biology of metal homeostasis and detoxification. (Topics in current genetics) (Vol. 14, pp. 299–340). Berlin: Springer.CrossRefGoogle Scholar
  28. Pilon-Smits, E. A. H. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.CrossRefGoogle Scholar
  29. Purakayastha, T. J., Viswanath, T., Bhadraray, S., Chhonkar, P. K., Adhikari, P. P., & Suribabu, K. (2008). Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. International Journal of Phytoremediation, 10(1), 61–72.CrossRefGoogle Scholar
  30. Redondo-Gomez, S., Mateos-Naranjo, E., Vecino-Bueno, I., & Feldman, S. R. (2011). Accumulation and tolerance characteristics of chromium in a cord grass Cr-hyperaccumulator, Spartina argentinensis. Journal of Hazardous Materials, 185(2–3), 826–829.Google Scholar
  31. Rice, E. W., Baird, R. B., Eaton, A. D., & Clesceri, L. S. (2012). Standard methods for the examination of water and wastewater. Washington DC: American Public Health Association/American Water Works Association/Water Environment Federation.Google Scholar
  32. Rosa, G., Peralta-videa, J. R., Montes, M., & Parsons, J. L. (2004). Cadmium uptake and translocation in tumbleweed (Salsola Kali) a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere, 55, 1159–1168.CrossRefGoogle Scholar
  33. Ruzin, S. E. (1999). Plant microtechnique and microscopy (pp. 322). Oxford, New York: Oxford University Press.Google Scholar
  34. Shekhawat, V. P. S., Kumar, A., & Neumann, K. H. (2006). Bio-reclamation of secondary salinized soils using halophytes. In M. Öztürk, Y. Waisel, M. A. Khan, & G. Görk (Eds.), Biosaline agriculture and salinity tolerance in plants (pp. 147–154). Switzerland: Birkhäuser Basel.CrossRefGoogle Scholar
  35. Usha Shri, P., & Pillay, V. (2017). Excess of soil zinc interferes with uptake of other micro and macro nutrients in Sorghum bicolor (L.) plants. Indian Journal of Plant Physiology, 22(3), 304–308.CrossRefGoogle Scholar
  36. Vlatko, K., SlaDana, K., Miljan, B., Dijana, D., & Nada, B. (2014). Bioaccumulation and translocation of heavy metals by Ceratophyllum demersum from the Skadar Lake, Montenegro. Journal of the Serbian Chemical Society, 79(11), 1445–1460.CrossRefGoogle Scholar
  37. Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. The Science of the Total Environment, 368, 456–464.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Narjes S. Mohammadi Jahromi
    • 1
  • Parissa Jonoubi
    • 1
    Email author
  • Ahmad Majd
    • 1
  • Mansooreh Dehghani
    • 2
  1. 1.Plant Sciences Department, Biological Sciences FacultyKharazmi UniversityTehranIran
  2. 2.Research Center for Health Sciences, Department of Environmental Health, School of HealthShiraz University of Medical SciencesShirazIran

Personalised recommendations