Advertisement

Research of OSA seasonal training in the São Paulo River, BTS: a tool to prevent potential ecotoxicological impacts

  • Adrielle Beatrice do Ó. MartinsEmail author
  • Samires Moura Malaquias Pinheiro
  • Lua Morena Leoncio
  • Milton Santos Cardoso Filho
  • Guilherme Silva Mesquita
  • Pedro Ivo de Souza Braga
  • Antônio Fernando Queiroz
  • Olívia Maria Cordeiro de Oliveira
  • Anderson Gomes de Oliveira
  • Ícaro Thiago Andrade Moreira
Article
  • 10 Downloads

Abstract

Oil exploitation, the basis of the world energy sector, is linked to risks and accidents, causing damage to the affected regions. Oil-suspended particulate matter aggregate (OSA) is a promising technology to mitigate those effects. The present study periodically (February 2016 and July 2016) evaluated the dispersion of oil at 28 points in the São Paulo River’s estuary, Todos os Santos Bay, Brazil, analyzing the influence of suspended particulate matter (SPM), particulate organic carbon (POC), ions, and chlorophyll on the formation OSA, targeting the prediction of possible ecotoxicological risks. The results showed that the estuary presented similar characteristics in the expeditions, reflecting the oil dispersion pattern through the formation of OSAs, being 92.86% dispersed in the column in the first and 85.71% in the second expedition. The results also pointed to the possibility of pollution in the food chain, reduced fertility, the emergence of abnormalities and the gradual disappearance of species across the whole river in a possible oil spill.

Keywords

Oil Oil-suspended particulate matter aggregate—OSA Coastal environments Ecotoxicology Estuary 

Notes

Acknowledgements

The authors would like to thank the National Council for Scientific and Technological Development of Brazil (CNPq) for their assistance in the development of the project Development of Multibioprocess of remediation applicable in coastal areas impacted by petroleum activities (DEMBPETRO - BIOTEC).

References

  1. Al-Sarawi, H., Jha, A. N., Al-Sarawi, M. A., & Lyons, B. P. (2015). Historic and contemporary contamination in the marine environment of Kuwait: an overview. Marine Pollution Bulletin, 100(2), 621–628.CrossRefGoogle Scholar
  2. APHA - American Public Health Association. (1992). American Works Association, Water Pollution Control Federation. Standard Methods for examination water and wastewater. 18. ed. Washington.Google Scholar
  3. Assunção, R. V. (2014). Investigação laboratorial da formação do agregado óleo-material particulado em suspensão do norte da Baía de Todos os Santos, BA, Brasil. Salvador: Monography, Oceanography, Federal University of Bahia.Google Scholar
  4. Azevedo, S. M. C., Vasconcelos, D. V., & Avelar, J. C. L. (2014). Análises físico-químicas do corpo hídrico na fazenda São Gonçalo em Paraty (RJ). Revista Ibero-Americana de Ciências Ambientais, 5(1), 228–334.CrossRefGoogle Scholar
  5. BAHIA - Environmental Resource Center. (2000). Water quality assessment of the Recôncavo Norte Hydrographic Basin: technical report, environmental. Salvador, 2nd semester.Google Scholar
  6. BAHIA - Environmental Resource Center. (2002). Avaliação da qualidade das águas da Bacia Hidrográfica do Recôncavo Norte: relatório técnico, avaliação ambiental. Salvador: CRA, 2002.Google Scholar
  7. Bragg, J. R., Owens, E. H. (1995). Shoreline cleansing by interactions between oil and fine mineral particles. Proceedings of the 1995 International Oil Spill Conference, 4620, 219–227.Google Scholar
  8. Cairns, J., Jr., & Bulkema, A. L. (1984). Restoration of habitats impacted by oil spills. London Ann Arbor Science, 7(4), 459–471.Google Scholar
  9. Carvalho, L. V. M. (2007). Estudo da qualidade da água superficial em zona estuarina do rio São Paulo- Região de Candeias. Bahia: Dissertation (Master in Geochemistry and Environment) - Institute of Geosciences, Federal University of Bahia.Google Scholar
  10. CETESB - Environmental Company of the State of São Paulo.(2007). Ambientes costeiros contaminados por petróleo - procedimentos de limpeza. São Paulo. http://www.cetesb.sp.gov.br/userfiles/file/emergencias-quimicas/acidentesN/ambiente-costeiros.pdf. Accessed on: 08/17/2015.
  11. CETESB - Environmental Company of the State of São Paulo. Morte de peixes. (2008). Available at: http://mortandadedepeixes.cetesb.sp.gov.br/alteracoes-fisicas-e-quimicas/contaminantes/oleos. Accsessed on: 08/17/2015.
  12. Colombo, J. C., Barreda, A., Bilos, C., Cappelletti, M., Migoya, M. C., & Skorupka, C. (2005). Oil spill in the Rıo de la Plata estuary, Argentina: 2-hydrocarbon disappearance rates in sediments and soils. Environmental Pollution, 134(2), 267–276.CrossRefGoogle Scholar
  13. EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária Centro Nacional de Pesquisa de Solos. (2009). Manual de análises químicas de solos, plantas e fertilizantes (2nd ed.). Brasília, DF: Embrapa Informação Tecnológica.Google Scholar
  14. Evans, D. R., & Rice, S. P. (1984). Effects of oil on marine ecosystems: a review for administrators and policy makers. Fisheries Bulletin, 72(3), 625–638.Google Scholar
  15. Ferreira, A. N. (2011). Avaliação do impacto da dragagem sobre associação fitoplanctônica do Porto de Aratu, Baía de Todos os Santos. Salvador: Dissertation Dissertation, Geochemistry: Petroleum and Environment, Federal University of Bahia.Google Scholar
  16. Fiorucci, A. R., & Benedetti Filho, E. (2005). A importância do oxigênio dissolvido nos ecossistemas aquáticos. Química e Sociedade, 22, 10–16.Google Scholar
  17. Gong, Y., Zhao, X., Cai, Z., O’Reilly, S. E., Hao, X., & Zhao, D. (2014). A review of oil, dispersed oil and sediment interactions in the aquatic environment: influence on the fate, transport and remediation of oil spills. Marine Pollution Buletin, 79(1–2), 16–33.CrossRefGoogle Scholar
  18. Gustitus, S. A., Jonh, G. F., & Clement, T. P. (2017). Effects of weathering on the dispersion of crude oil through oil-mineral aggregation. Science of the Total Environment, 587-588, 36–46.CrossRefGoogle Scholar
  19. Hyland, J. L., Schineider E. D. (1976). Petroleum hydrocarbons and their effect on marine organisms, populations, comunities, and ecosystems. In: Sources, effects and skins of hydrocarbons in the marine environment. Proceedings of the symposium, DC: Washington.Google Scholar
  20. Igole, B., Sivadas, S., Goltekar, R., Clemente, S., Nanajkar, M., Sawant, R., D’silva, C., Sarkar, A., & Ansari, Z. (2006). Ecotoxicological effect of grounded MV River princess on the intertidal benthic organisms off Goa. Marine Pollution and Ecotoxicology, 32(2), 284–229.Google Scholar
  21. ITOPF- The international tanker owners pollution federation (2016). Environmental Effects of Oil Spills. http://www.itopf.com/knowledge-resources/documents-guides/environmental-effects/. Accessed: 15/05/2016.
  22. Khelifa, A., Stoffyn-Egli, P., Hill, P. S., & Lee, K. (2002). Characteristics of oil droplets stabilized by mineral particles: effects of oil type and temperature. Spill Science & Technology Bulletin, 8(1), 19–30.CrossRefGoogle Scholar
  23. Khelifa, A., Stoffyn-Egli, P., Hill, P. S., & Lee, K. (2005) Effects of salinity and clay type on oil–mineral aggregation. Marine Environmental Research, 59, 235–254.Google Scholar
  24. KIRIMURÊ - Instituto Kirimurê. Baía de Todos os Santos. (2016). Available at: http://www.btsinstitutokirimure.ufba.br/?p=4. Accessed on: 16 July 2016.
  25. Lee, K., Stoffyn-Egli, P., Owens, E. H. (2001). Natural dispersion of oil in a freshwater ecosystem: Desaguadero pipeline spill, Bolivia. Proceedings International Oil Spill Conference. 1445–1448.Google Scholar
  26. Martins, S. S. S., Azevedo, M. O., Silva, M. P. S., & Silva, V. P. (2015). Produção de petróleo e impactos ambientais: algumas considerações. HOLOS, 6(31), 54–76.CrossRefGoogle Scholar
  27. Miranda, L. S., Moreira, I. T. A., Oliveira, O. M. C., Santos, C. P., Pinheiro, S. M. M., Martins, A. B. O., Cardoso Filho, M. S. C., & Oliveira, L. M. L. (2016). Oil-suspended particulate material aggregates as a tool in preventing potential ecotoxicological impacts in the São Paulo river, Todos os Santos Bay, Bahia, Brazil: influence of salinity and suspended particulate material. Marine Pollution Bulletin, 112(1–2), 91–97.CrossRefGoogle Scholar
  28. Moreira, I. T. A. (2014). Investigação dos possíveis impactos ecológicos do petróleo sobre comunidades biológicas estuarinas na Baía de Todos os Santos e no sul da Bahia: OSA como uma ferramenta norteadora. Bahia: Thesis (Doctorate in Geology) - Institute of Geosciences, Federal University of Bahia.Google Scholar
  29. Moreira, I. T. A., Oliveira, O. M. C., Silva, C. S., Rios, M. C., Queiroz, A. F. S., Assunção, R. V., & Carvalho, A. P. N. (2015). Chemometrics applied in laboratory study on formation of oil–spm aggregates (OSAs) — a contribution to ecological evaluation. Microchemical Journal, 118, 198–202.CrossRefGoogle Scholar
  30. Nelson, W. G. (1982). Experimental studies of oil polution on the rocky intertidal community of a Norwegian Fjord. Journal of Experimental Marine Biology and Ecology, 65, 121–138.CrossRefGoogle Scholar
  31. Noreña-Barroso, E., Gold-Bouchot, G., Zapata-Perez, O., & Sericano, J. L. (1999). Polynuclear aromatic hydrocarbons in American oysters Crassostrea virginica from the Terminos Lagoon, Campeche, Mexico. Marine Pollution Bulletin, 38(8), 637–645.CrossRefGoogle Scholar
  32. Owens, E. H., & Lee, K. (2003). Interaction of oil and mineral fines on shorelines: review and assessment. Marine Pollution Bulletin, 47(9–12), 397–405.CrossRefGoogle Scholar
  33. Ramos Junior, A. B. S. (2012). Hidroquímica do rio São Paulo, recôncavo baiano. Salvador: Dissertation, Geochemistry: Petroleum and Environment, Federal University of Bahia.Google Scholar
  34. Research Planning Institute. (1985). Coastal process field manual for oil spill assessment. In: Pereira, R. C.; Gomes, A. S. (Eds): Interciência. Vol. 1. Rio de Janeiro, pp. 311–334.Google Scholar
  35. Ribeiro, D. V., & Morelli, M. R. (2009). Resíduos sólidos: Problemas ou Oportunidades? Rio de Janeiro: Interciência.Google Scholar
  36. Rios, M. C. (2014). Capacidade do sedimento do estuário do Paraguaçu-Ba de formar agregado óleo- material particulado em suspensão (OSA). Salvador: Monography, Oceanography, Federal University of Bahia.Google Scholar
  37. Rios, M. C., Moreira, I. T. A., Oliveira, O. M. C., Pereira, T. S., Almeida, M., Trindade, M. C. F. L., Menezes, L., & Caldas, A. S. (2017). Capability of Paraguaçu estuary (Todos os Santos Bay, Brazil) to form oil–SPM aggregates (OSA) and their ecotoxicological effects on pelagic and benthic organisms. Marine Polution, 114, 364–371.CrossRefGoogle Scholar
  38. Santos, P. V. (2012). Impactos ambientais causados pela perfuração de petróleo. Cadernos de graduação – ciências exatas e tecnológicas, 1, 153–163.Google Scholar
  39. Silva, E. C. (2012). Variação do oxigênio dissolvido em gradientes de profundidade no oceano antártico e relações com o aquecimento global. Rio de Janeiro: Dissertation, Ecology and Natural Resources, Northern Fluminense State University Darcy Ribeiro.Google Scholar
  40. Silva, C. S. (2014). Potencial do OSA (agregado óleo - material particulado em suspensão) como agente de remedição em modelos de simulação de praias impactadas por petróleo. Salvador: Dissertation, Geochemistry: Petroleum and Environment, Federal University of Bahia.Google Scholar
  41. Stoffyn-Egli, P., & Lee, K. (2002). Formation and characterization of oil–mineral aggregates. Spill Science & Technology Bulletin, 8(1), 31–44.CrossRefGoogle Scholar
  42. Trindade, M. C. L. F., Oliveira, O. M. C., Moreira, I. T. A., Queiroz, A. F. S., Silva, C. S., Rios, M. C. (2012). Formation and characterization of aggregate mineral oil in different hydrodynamic energies: important role in the natural removal of spills. Rio de Janeiro: Rio Oil & Gas Expo and Conference.Google Scholar
  43. USEPA - United States Environmental Protection Agency. (2007). Microwave extraction, method USEPA 3546.Google Scholar
  44. Varella, C. A. A., Sena Junior, D, G. (2008). Estudo do interpolador IDW do Arcview para utilização em agricultura de precisão. Rio de Janeiro: Federal Rural University of Rio de Janeiro - UFRRJ.Google Scholar
  45. Wang, W., Zheng, Y., & Lee, K. (2013). Chemical dispersion of oil with mineral fines in a low temperature environment. Marine Pollution Bulletin, 72, 205–212.CrossRefGoogle Scholar
  46. Zuloaga, O., Prieto, A., Usobiaga, A., Sarkar, S. K., Chatterjee, M., Bhattacharya, B. D., Bhattacharya, A., Alam, M. A., & Satpathy, K. K. (2009). Polycyclic aromatic hydrocarbons in intertidal marine bivalves of Sunderban mangrove wetland, India: an approach to bioindicator species. Water, Air, and Soil Pollution, 201, 305–318.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Adrielle Beatrice do Ó. Martins
    • 1
    • 2
    Email author
  • Samires Moura Malaquias Pinheiro
    • 1
    • 2
  • Lua Morena Leoncio
    • 1
    • 2
  • Milton Santos Cardoso Filho
    • 1
    • 2
  • Guilherme Silva Mesquita
    • 1
    • 2
  • Pedro Ivo de Souza Braga
    • 2
  • Antônio Fernando Queiroz
    • 2
  • Olívia Maria Cordeiro de Oliveira
    • 2
  • Anderson Gomes de Oliveira
    • 1
  • Ícaro Thiago Andrade Moreira
    • 1
    • 2
  1. 1.EEATIUniversidade SalvadorSalvadorBrazil
  2. 2.Núcleo de Estudos Ambientais, Instituto de GeociênciasUniversidade Federal da BahiaSalvadorBrazil

Personalised recommendations